CPS 140 - Mathematical Foundations of CS Dr. S. Rodger

Section: Turing Machines (handout)

Review

Regular Languages

- FA, RG, RE
- \bullet recognize

Context Free Languages

- PDA, CFG
- recognize

DFA:

Turing Machine:

Turing Machine (TM)

- invented by Alan M. Turing (1936)
- computational model to study algorithms

Definition of TM

- Storage
 - tape
- actions
 - write symbol
 - read symbol
 - move left (L) or right (R)
- computation
 - initial configuration
 - * start state
 - * tape head on leftmost tape square
 - * input string followed by blanks
 - processing computation
 - * move tape head left or right
 - * read from and write to tape
 - computation halts
 - * final state

Formal Definition of TM

A TM M is defined by $M=(Q,\Sigma,\Gamma,\delta,q_0,B,F)$ where

- Q is finite set of states
- Σ is input alphabet
- Γ is tape alphabet
- B $\in \Gamma$ is blank
- q_0 is start state
- F is set of final states
- δ is transition function

 $\delta(q,a) = (p,b,R)$ means "if in state q with the tape head pointing to an 'a', then move into state p, write a 'b' on the tape and move to the right".

TM as Language recognizer

Definition: Configuration is denoted by \vdash .

if $\delta(q,a) = (p,b,R)$ then a move is denoted

abaqabba \vdash ababpbba

Definition: Let M be a TM, M=(Q, Σ , Γ , δ , q_0 ,B,F). L(M) = { $w \in \Sigma^* | q_0 w \vdash x_1 q_f x_2$ for some $q_f \in F$, $x_1, x_2 \in \Gamma^*$ }

TM as language acceptor

M is a TM, w is in Σ^* ,

- \bullet if $w \in L(M)$ then M halts in final state
- if $w \notin L(M)$ then either
 - M halts in non-final state
 - M doesn't halt

Example

$$\Sigma = \{a,b\}$$

Replace every second 'a' by a 'b' if string is even length.

 \bullet Algorithm

Example:

$$L = \{a^n b^n c^n | n \ge 1\}$$

Is the following TM Correct?

TM as a transducer

TM can implement a function: f(w)=w'

start with: \mathbf{w}

end with: \mathbf{w}' \uparrow

Definition: A function with domain D is *Turing-computable* or *computable* if there exists TM $M=(Q,\Sigma,\Gamma,\delta,q_0,B,F)$ such that

$$q_0w \stackrel{*}{\vdash} q_f f(w)$$

 $q_f \in \mathcal{F}$, for all $w \in \mathcal{D}$.

Example:

$$f(x) = 2x$$

x is a unary number

start with: 111 \uparrow end with: 1111111 \uparrow

Is the following TM correct?

Example:

$$\mathbf{L} \! = \! \{ ww \mid w \in \Sigma^+ \}, \, \Sigma \! = \! \{a,b\}$$