CPS 140 - Mathematical Foundations of CS Dr. S. Rodger Section: Turing Machines (handout) #### Review Regular Languages - FA, RG, RE - \bullet recognize Context Free Languages - PDA, CFG - recognize #### DFA: ### Turing Machine: #### Turing Machine (TM) - invented by Alan M. Turing (1936) - computational model to study algorithms #### Definition of TM - Storage - tape - actions - write symbol - read symbol - move left (L) or right (R) - computation - initial configuration - * start state - * tape head on leftmost tape square - * input string followed by blanks - processing computation - * move tape head left or right - * read from and write to tape - computation halts - * final state #### Formal Definition of TM A TM M is defined by $M=(Q,\Sigma,\Gamma,\delta,q_0,B,F)$ where - Q is finite set of states - Σ is input alphabet - Γ is tape alphabet - B $\in \Gamma$ is blank - q_0 is start state - F is set of final states - δ is transition function $\delta(q,a) = (p,b,R)$ means "if in state q with the tape head pointing to an 'a', then move into state p, write a 'b' on the tape and move to the right". #### TM as Language recognizer **Definition**: Configuration is denoted by \vdash . if $\delta(q,a) = (p,b,R)$ then a move is denoted abaqabba \vdash ababpbba **Definition:** Let M be a TM, M=(Q, Σ , Γ , δ , q_0 ,B,F). L(M) = { $w \in \Sigma^* | q_0 w \vdash x_1 q_f x_2$ for some $q_f \in F$, $x_1, x_2 \in \Gamma^*$ } #### TM as language acceptor M is a TM, w is in Σ^* , - \bullet if $w \in L(M)$ then M halts in final state - if $w \notin L(M)$ then either - M halts in non-final state - M doesn't halt #### Example $$\Sigma = \{a,b\}$$ Replace every second 'a' by a 'b' if string is even length. \bullet Algorithm #### Example: $$L = \{a^n b^n c^n | n \ge 1\}$$ Is the following TM Correct? #### TM as a transducer TM can implement a function: f(w)=w' start with: \mathbf{w} end with: \mathbf{w}' \uparrow **Definition:** A function with domain D is *Turing-computable* or *computable* if there exists TM $M=(Q,\Sigma,\Gamma,\delta,q_0,B,F)$ such that $$q_0w \stackrel{*}{\vdash} q_f f(w)$$ $q_f \in \mathcal{F}$, for all $w \in \mathcal{D}$. #### Example: $$f(x) = 2x$$ x is a unary number start with: 111 \uparrow end with: 1111111 \uparrow Is the following TM correct? ## Example: $$\mathbf{L} \! = \! \{ ww \mid w \in \Sigma^+ \}, \, \Sigma \! = \! \{a,b\}$$