CPS 140 - Mathematical Foundations of CS Dr. Susan Rodger

Section: Regular Languages (Ch. 3) (handout)

Regular Expressions

Method to represent strings in a language

- + union (or)
- o concatenation (AND) (can omit)
- * star-closure (repeat 0 or more times)

Example:

$$(a+b)^* \circ a \circ (a+b)^*$$

Example:

 $(aa)^*$

Definition Given Σ ,

- 1. \emptyset , λ , $a \in \Sigma$ are R.E.
- 2. If r and s are R.E. then
 - r+s is R.E.
 - rs is R.E.
 - (r) is a R.E.
 - r* is R.E.
- 3. r is a R.E. iff it can be derived from (1) with a finite number of applications of (2).

Definition: L(r) = language denoted by R.E. r.

- 1. \emptyset , $\{\lambda\}$, $\{a\}$ are L denoted by a R.E.
- 2. if r and s are R.E. then
 - (a) $L(r+s) = L(r) \cup L(s)$
 - (b) $L(rs) = L(r) \circ L(s)$
 - (c) L((r)) = L(r)
 - (d) $L((r)^*) = (L(r)^*)$

Precedence Rules

- * highest
- _

Example:

$$ab^* + c =$$

Examples:

1. $\Sigma = \{a, b\}, \{w \in \Sigma^* \mid w \text{ has an odd number of } a\text{'s followed by an even number of } b\text{'s}\}.$

2. $\Sigma = \{a, b\}, \{w \in \Sigma^* \mid w \text{ has no more than 3 } a$'s and must end in ab}.

3. Regular expression for positive and negative integers

Section 3.2 Equivalence of DFA and R.E.

Theorem Let r be a R.E. Then \exists NFA M s.t. L(M) = L(r).

• Proof:

Ø

 $\{\lambda\}$

{*a*}

Suppose r and s are R.E.

- 1. r+s
- 2. ros
- 3. r*

Example

 $ab^* + c$

Theorem Let L be regular. Then \exists R.E. r s.t. L=L(r).

Proof Idea: remove states successively, generating equivalent generalized transition graphs (GTG) until only two states are left (one initial state and one final state).

• Proof:

L is regular

 $\Rightarrow \exists$

- 1. Assume M has one final state and $q_0 \notin F$
- 2. Convert to a generalized transition graph (GTG), all possible edges are present.

If no edge, label with

Let r_{ij} stand for label of the edge from q_i to q_j

3. If the GTG has only two states, then it has the following form:

In this case the regular expression is:

$$r = (r_{ii}^* r_{ij} r_{jj}^* r_{ji})^* r_{ii}^* r_{ij} r_{jj}^*$$

4. If the GTG has three states then it must have the following form:

In this case, make the following replacements:

$egin{array}{cccc} r_{ii} & r_{ik}r_{kk}^*r_{ki} \\ r_{jj} & r_{jj} + r_{jk}r_{kk}^*r_{kj} \\ r_{ij} & r_{ij} + r_{ik}r_{kk}^*r_{kj} \\ r_{ji} & r_{ji} + r_{jk}r_{kk}^*r_{ki} \end{array}$	REPLACE	WITH
$r_{ij} = r_{ik} r_{kk}^{**} r_{kj}$	r_{ii}	$r_{ii} + r_{ik}r_{kk}^*r_{ki}$
	r_{jj}	33 3 1010 3
$r_{ji} = r_{jk} r_{kk}^* r_{ki}$	r_{ij}	
0 0 1111	r_{ii}	m m m * m

After these replacements, remove state q_k and its edges.

5. If the GTG has four or more states, pick a state q_k to be removed (not initial or final state).

For all $o \neq k, p \neq k$ use the rule

 r_{op} replaced with $r_{op} + r_{ok} r_{kk}^{\ast} r_{kp}$

with different values of o and p.

When done, remove q_k and all its edges. Continue eliminating states until only two states are left. Finish with step 3.

6. In each step, simplify the regular expressions r and s with:

$$\begin{aligned} r+r &= r \\ s+r^*s &= \\ r+\emptyset &= \\ r\emptyset &= \\ \theta^* &= \\ r\lambda &= \\ (\lambda+r)^* &= \\ (\lambda+r)r^* &= \\ \end{aligned}$$

and similar rules.

Example:

Section 3.3

Grammar G=(V,T,S,P)

V variables (nonterminals)

T terminals

S start symbol

P productions

Right-linear grammar:

$$\begin{aligned} \text{all productions of form} \\ A &\to xB \\ A &\to x \\ \end{aligned}$$
 where $A,B \in V,\, x \in T^*$

Left-linear grammar:

$$\label{eq:all productions} \begin{split} A &\to Bx \\ A &\to x \\ \text{where } A,B \in V,\, x \in T^* \end{split}$$

Definition:

A regular grammar is a right-linear or left-linear grammar.

Example 1:

G=(
$$\{S\},\{a,b\},S,P$$
), P=
 $S \to abS$
 $S \to \lambda$
 $S \to Sab$

Example 2:

$$\begin{aligned} G &= (\{S,B\}, \{a,b\}, S, P), \; P = \\ S &\rightarrow aB \mid bS \mid \lambda \\ B &\rightarrow aS \mid bB \end{aligned}$$

Theorem: L is a regular language iff \exists regular grammar G s.t. L=L(G).

Outline of proof:

 (\Longleftrightarrow) Given a regular grammar G Construct NFA M Show L(G)=L(M) (\Longrightarrow) Given a regular language \exists DFA M s.t. L=L(M)Construct reg. grammar G Show L(G)=L(M)

Proof of Theorem:

$$(\Longleftrightarrow) \text{ Given a regular grammar G} \\ G=(V,T,S,P) \\ V=\{V_0,V_1,\ldots,V_y\} \\ T=\{v_o,v_1,\ldots,v_z\} \\ S=V_0 \\ \text{Assume G is right-linear} \\ \text{ (see book for left-linear case)}. \\ \text{Construct NFA M s.t. L(G)=L(M)} \\ \text{If } w\in L(G), \ w=v_1v_2\ldots v_k \\ \end{cases}$$

$$\begin{aligned} \mathbf{M} &= (\mathbf{V} \cup \{V_f\}, \mathbf{T}, \delta, V_0, \{V_f\}) \\ V_0 \text{ is the start (initial) state} \\ \text{For each production, } V_i \rightarrow aV_j, \end{aligned}$$

For each production, $V_i \to a$,

Show
$$L(G)=L(M)$$

Thus, given R.G. G,
 $L(G)$ is regular

$$(\Longrightarrow) \text{ Given a regular language L} \\ \exists \text{ DFA M s.t. } \text{L=L(M)} \\ \text{M=}(\text{Q}, \Sigma, \delta, q_0, \text{ F}) \\ \text{Q=}\{q_0, q_1, \dots, q_n\} \\ \Sigma = \{a_1, a_2, \dots, a_m\} \\ \text{Construct R.G. G s.t. } \text{L(G)} = \text{L(M)} \\ \text{G=}(\text{Q}, \Sigma, q_0, \text{P}) \\ \text{if } \delta(q_i, a_j) = q_k \text{ then} \\ \end{aligned}$$

if
$$q_k \in \mathbb{F}$$
 then

$$\begin{array}{c} Show\ w\in L(M) \Longleftrightarrow w\in L(G)\\ Thus,\ L(G){=}L(M). \end{array}$$
 QED.

Example

$$G=(\{S,B\},\{a,b\},S,P),\ P=\\S\to aB\mid bS\mid \lambda\\B\to aS\mid bB$$

Example:

