Section: Regular Languages

Regular Expressions

Method to represent strings in a language

- + union (or)
- o concatenation (AND) (can omit)
- * star-closure (repeat 0 or more times)

Example:

$$(a+b)^* \circ a \circ (a+b)^*$$

Example:

$$(aa)^*$$

Definition Given Σ ,

- 1. \emptyset , λ , $a \in \Sigma$ are R.E.
- 2. If r and s are R.E. then
 - r+s is R.E.
 - rs is R.E.
 - (r) is a R.E.
 - r* is R.E.
- 3. r is a R.E. iff it can be derived from (1) with a finite number of applications of (2).

Definition: L(r) = language denoted by R.E. r.

- 1. \emptyset , $\{\lambda\}$, $\{a\}$ are L denoted by a R.E.
- 2. if r and s are R.E. then
 - (a) $L(r+s) = L(r) \cup L(s)$
 - (b) $L(rs) = L(r) \circ L(s)$
 - (c) L((r)) = L(r)
 - (d) $L((r)^*) = (L(r)^*)$

Precedence Rules

- * highest
- 0
- +

Example:

$$ab^* + c =$$

Examples:

- 1. $\Sigma = \{a, b\}$, $\{w \in \Sigma^* \mid w \text{ has an odd number of } a$'s followed by an even number of b's $\}$.
- 2. $\Sigma = \{a, b\}$, $\{w \in \Sigma^* \mid w \text{ has no more than 3 } a \text{'s and must end in } ab \}$.
- 3. Regular expression for positive and negative integers

Section 3.2 Equivalence of DFA and R.E.

Theorem Let r be a R.E. Then \exists NFA M s.t. L(M) = L(r).

• Proof:

 \emptyset $\{\lambda\}$

 $\{a\}$

Suppose r and s are R.E.

- 1. r+s
- 2. ros
- 3. r*

Example

$$ab^* + c$$

Theorem Let L be regular. Then \exists R.E. r s.t. L=L(r).

Proof Idea: remove states sucessively until two states left

- Proof:
 - L is regular

$$\Rightarrow \exists$$

1. Assume M has one final state and $q_0 \notin F$

2. Convert to a generalized transition graph (GTG), all possible edges are present. If no edge, label with Let r_{ij} stand for label of the edge from q_i to q_j

3. If the GTG has only two states, then it has the following form:

In this case the regular expression is:

$$r = (r_{ii}^* r_{ij} r_{jj}^* r_{ji})^* r_{ii}^* r_{ij} r_{jj}^*$$

4. If the GTG has three states then it must have the following form:

REPLACE

WITH

$\overline{r_{ii}}$	$r_{ii} + r_{ik}r_{kk}^*r_{ki}$
r_{jj}	$r_{jj} + r_{jk}r_{kk}^*r_{kj}$
r_{ij}	$r_{ij} + r_{ik}r_{kk}^*r_{kj}$
r_{ji}	$r_{ji} + r_{jk}r_{kk}^*r_{ki}$
remove state q_k	

5. If the GTG has four or more states, pick a state q_k to be removed (not initial or final state).

For all $o \neq k, p \neq k$ use the rule r_{op} replaced with $r_{op} + r_{ok}r_{kk}^*r_{kp}$ with different values of o and p.

When done, remove q_k and all its edges. Continue eliminating states until only two states are left. Finish with step 3.

6. In each step, simplify the regular expressions r and s with:

$$r + r = r$$

$$s + r^*s =$$

$$r + \emptyset =$$

$$r\emptyset =$$

$$\emptyset^* =$$

$$r\lambda =$$

$$(\lambda + r)^* =$$

$$(\lambda + r)r^* =$$

and similar rules.

Example:

Grammar G=(V,T,S,P)

V variables (nonterminals)

T terminals

S start symbol

P productions

Right-linear grammar:

all productions of form

$$\mathbf{A}
ightarrow \mathbf{x} \mathbf{B}$$

$$\mathbf{A}
ightarrow \mathbf{x}$$

where $A,B \in V, x \in T^*$

Left-linear grammar:

all productions of form

$$\mathbf{A} o \mathbf{B} \mathbf{x}$$

$$\mathbf{A} o \mathbf{x}$$

where $A,B \in V, x \in T^*$

Definition:

A regular grammar is a right-linear or left-linear grammar.

Example 1:

$$egin{aligned} \mathbf{G} = & (\{\mathbf{S}\}, \{\mathbf{a}, \mathbf{b}\}, \mathbf{S}, \mathbf{P}), \ \mathbf{P} = \\ \mathbf{S} & \rightarrow \mathbf{a} \mathbf{b} \mathbf{S} \\ \mathbf{S} & \rightarrow \lambda \\ \mathbf{S} & \rightarrow \mathbf{S} \mathbf{a} \mathbf{b} \end{aligned}$$

Example 2:

$$G=(\{S,B\},\{a,b\},S,P),\ P=S
ightarrow aB \mid bS \mid \lambda \ B
ightarrow aS \mid bB$$

Theorem: L is a regular language iff \exists regular grammar G s.t. L=L(G).

Outline of proof:

- (\Leftarrow) Given a regular grammar G Construct NFA M Show L(G)=L(M)
- (\Longrightarrow) Given a regular language \exists DFA M s.t. L=L(M) Construct reg. grammar G Show L(G) = L(M)

Proof of Theorem:

(
$$\Leftarrow$$
) Given a regular grammar G $G=(V,T,S,P)$ $V=\{V_0,V_1,\ldots,V_y\}$ $T=\{v_o,v_1,\ldots,v_z\}$ $S=V_0$ Assume G is right-linear (see book for left-linear case). Construct NFA M s.t. $L(G)=L(M)$ If $w\in L(G)$, $w=v_1v_2\ldots v_k$

$$\mathbf{M} = (\mathbf{V} \cup \{V_f\}, \mathbf{T}, \delta, V_0, \{V_f\})$$
 V_0 is the start (initial) state
For each production, $V_i \to aV_j$,

For each production, $V_i \rightarrow a$,

(\Longrightarrow) Given a regular language L \exists DFA M s.t. L=L(M) $\mathbf{M}=(\mathbf{Q},\Sigma,\delta,q_0,\mathbf{F})$ $\mathbf{Q}=\{q_0,q_1,\ldots,q_n\}$ $\Sigma=\{a_1,a_2,\ldots,a_m\}$ Construct R.G. G s.t. L(G) = L(M $\mathbf{G}=(\mathbf{Q},\Sigma,q_0,\mathbf{P})$ if $\delta(q_i,a_j)=q_k$ then

if $q_k \in \mathbf{F}$ then

Show $w \in L(M) \iff w \in L(G)$ Thus, L(G)=L(M).

QED.

Example

$$G=(\{S,B\},\{a,b\},S,P),\ P=S
ightarrow aB \mid bS \mid \lambda \ B
ightarrow aS \mid bB$$

Example:

