
INFORMATION EXTRACTION

By Sunita Sarawagi

Presented by Rohit Paravastu and Will Wu

ROADMAP

 Introduction

 Entity Extraction: Rule-based Methods

 Entity Extraction: Statistical Methods

 Relationship Extraction

 Management of Information Extraction Systems

ISSUES TO BE ADDRESSED

 What is Information Extraction?

 Why do we need Information Extraction after all

(applications)?

 What is/are the formal problem definition(s)?

 What are the approaches people have taken?

 What are the challenges?

WHAT IS INFORMATION EXTRACTION…?

 In one sentence: automatic extraction of

structured information from unstructured

sources

 Input: unstructured sources

Output: structured information

INPUT AND OUTPUT

 Type of unstructured source (input)
 Granularity

 Records, sentences
 <inst> Duke University </inst>, <city> Durham </city>, <state> NC

</state>, <zipcode> 27708 </zipcode>

 Paragraphs, documents, etc.

 Heterogeneity
Machine generated pages, partially structured domain specific

sources, open ended sources, etc.

 Type of structure extracted (output)
 Entities, relationships, lists, tables, attributes, etc.

WHY INFORMATION EXTRACTION?

 Structured information is much easier to

handle by computers

APPLICATIONS

 Enterprise

News tracking

 Customer care

Data cleaning

 Personal information management

 Scientific applications

APPLICATIONS (CONT’D)

 Web oriented applications

 Citation databases

Opinion databases

 Community websites

 Comparison shopping

 Ad placement on webpages

 Structured web searches

OTHER KEY COMPONENTS

 Type of input resources available for extraction

 Structured databases, labeled unstructured data,

linguistic tags, etc.

 Method used for extraction

Rule-based, statistical

Manually coded, trained from examples

 Representation of output

 Annotated unstructured text, database

CHALLENGES

 Accuracy

Diversity of clues

Difficulty of detecting missed extractions

 Increased complexity of the structures extracted

 Efficiency (running time)

 Other systems issues

Dynamically changing sources

Data integration

 Extraction errors

A BRIEF HISTORY

 Rooted in the Natural Language Processing (NLP) community

 Scope extended by two competitions

 Message Understanding Conference (MUC)

 Automatic Content Extraction (ACE)

 Now spanning

 Machine learning

 Information retrieval

 Database

 Web

 Document analysis

ROADMAP

 Introduction

 Entity Extraction: Rule-based Methods

 Entity Extraction: Statistical Methods

 Relationship Extraction

 Management of Information Extraction Systems

OVERVIEW

 Extraction handled through a collection of rule

 How are rules obtained?

Manually coded

 Learnt from example labeled sources

 How to control the firings of multiple rules?

BASIC FORM OF A RULE

 Contextual pattern -> Action

Use the pattern to match unstructured source

 If matched, take the action

FEATURES OF TOKENS

 String

 Orthography type

 E.g. Capitalized word, smallcase word, mixed case word,

number, special symbol, space, punctuation, etc.

 List of dictionaries in which the token appears

 E.g. “DictionaryLookup = start of city”

 Annotations attached by earlier processing steps

RULE TYPE I – SINGLE ENTITY

 ({DictionaryLookup = Titles}{String = “.”}
{Orthography type = capitalized word}{2}) ->
Person Names.

Matches person names such as “Dr. Jun Yang”

 ({String = “by”|String = “in”}) ({Orthography
type = Number}):y -> Year=:y.

Matches any number following “by” or “in”

 Could be used to extract Year entity

RULE TYPE I – SINGLE ENTITY

 A simple exercise

 ({String = “The”}? {Orthography type = All

capitalized} {Orthography type = Capitalized word,

DictionaryType Company end}) -> Company name.

RULE TYPE II – MARK ENTITY BOUNDARIES

 ({String=“to”} {String = “appear”} {String=“in”)):jstart

({Orthography type = Capitalized word}{2-5}}) -> insert

<journal> after:jstart

 Annotation, may be used by following processing steps

RULE TYPE III – MULTIPLE ENTITIES

 ({Orthography type = Digit}):Bedrooms ({String=“BR”})

({}*) ({String =“$”}) ({Orthography type =

Number}):Price -> Number of Bedrooms = :Bedrooms,

Rent = :Price

ORGANIZING COLLECTION OF RULES

 Custom policies to resolve conflicts
 Prefer rules matching a longer span

 Prefer higher priority in case of a tie

 Merge the spans of text that overlap
 Only if action part is the same

 Rules arranged as an ordered set
 R1: ({String=“to”} {String=“appear”} {String=

“in”}) :jstart ({Orthography type = Capitalized word}{2-5})
-> insert <journal> after :jstart

 R2: {tag = <journal>}({Orthography type=word}+):jend
{String = “vol”} -> insert </journal> after :jend

HOW ARE RULES FORMULATED?

 Manually coded by a domain expert

 Learnt automatically…

…from labeled examples of entities in unstructured

text

 Trying to achieve

High coverage

High precision

With a small set of rules

RULE LEARNING ALGORITHMS

 Rset = set of rules, initially empty

 While there exists an entity x not covered by

any rule in Rset

 Form new rules around x

 Add new rules to Rset

 Post process rules to prune away redundant

rules

HOW TO FORM NEW RULES?

 Bottom-up rule formulation

Generalize a specific rule

 Top-down rule formulation

 Elaborate a generalized rule

ROADMAP

 Introduction

 Entity Extraction: Rule-based Methods

 Entity Extraction: Statistical Methods

 Relationship Extraction

 Management of Information Extraction Systems

STATISTICAL METHODS

 Decompose text into parts and model

distributions to label each part jointly or

independently

 Decomposition done either into

 Tokens (single word)

 Segments (Group of words)

OVERVIEW

 Token Level Methods

 Features

 Labeling

 Segment Level Methods

 Features

 Labeling

 Grammar based Models

 Training Methods

 Inference Algorithms

NOTATION

 ‘X’ denotes the given sentence

 xi denotes each token/segment

 Y is the set of labels (entity labels) for X

 yi is the label for segment xi

 yi can be either an entity from a predefined set

of entity types or “other” if it does not belong to

any entity type

TOKEN-LEVEL METHODS

 Decompose the text ‘X’ into individual words xi

 Convert the sentence into set of labels Y={yi}

EXAMPLES

TYPES OF TOKENS

 Two styles of encoding

 BCEO (Begin, Continue, End, Other)

 BIO (Begin, Inside, Other)

 Similar to Classification

OVERVIEW

 Token Level Methods

 Features

 Labeling

 Segment Level Methods

 Features

 Grammar based Models

 Training Methods

 Inference Algorithms

FEATURES

 Clues/features designed to understand the

properties of a token and the context of its

position in the text

 f: (x,y,i) → R

 R can be boolean or be a probability value to

show the score/possibility of a token ‘y’ being

assigned to x_i

FEATURES

 Word Features

 f (y,x,i)= [[Xi equals Fagin]].[[y= Author]]

 Orthographic Features

 Capitalization patterns, placement of dots etc

 f(y,x,i)=[[xi matches INITIAL_DOT

capsWord]].[[y=Author]]

 Dictionary Lookup Features

 Direct matches from a set of seed examples

OVERVIEW

 Token Level Methods

 Features

 Labeling

 Segment Level Methods

 Features

 Grammar based Models

 Training Methods

 Inference Algorithms

TOKEN LABELING

 Either independent of all other tokens or
dependant on the previously labeled ones

 SVMs to classify them independently

 Each token in the test set treated as a data point and
the features as the axes

 Dependency calculation

 HMMs

 Maximum Entropy Taggers (ME Markov Models)

 Conditional Markov Models

 Conditional Random Fields

CONDITIONAL RANDOM FIELDS (CRF)

 Models a joint distribution P(y|x) over the set of

predicted labels for tokens in x

 Tractable due to Markov Random Field

assumption

 A label yi only depends on the features of xi and

the previous label yi-1

 Features changes from f(yi,x, i) to f(yi, x, i, yi-1)

CONDITIONAL RANDOM FIELDS

OVERVIEW

 Token Level Methods

 Features

 Labeling

 Segment Level Methods

 Features

 Grammar based Models

 Training Methods

 Inference Algorithms

SEGMENT-LEVEL METHODS

 Divide text into segments rather than individual

tokens

 Useful to calculate entity dependencies

 Problem: How do we determine Segment

boundaries ? Inference

OVERVIEW

 Token Level Methods

 Features

 Labeling

 Segment Level Methods

 Features

 Grammar based Models

 Training Methods

 Inference Algorithms

FEATURES

 Features defined over segments/multiple

tokens

 More easy to map exact matches to a

dictionary

 Use TFIDF in features to get rid of noise in

unstructured text

SEGMENTATION MODELING

 Similar to Token label modeling

 Done on a group of tokens rather than

individual tokens

 f(x,s)= 𝑓(𝑦𝑗 , 𝑥, 𝑙𝑗 , 𝑢𝑗 , 𝑦𝑗−1)
|𝑠|
𝑗=1

OVERVIEW

 Token Level Methods

 Features

 Labeling

 Segment Level Methods

 Features

 Grammar based Models

 Training Methods

 Inference Algorithms

GRAMMAR BASED MODELS

 A context free grammar for each entity

 For each segment, output a parse tree for each

grammar

 Label entity to the segment if

 Segment accepted by the grammar

 maximum score is used for labeling

GRAMMAR BASED MODELS

 Example

OVERVIEW

 Token Level Methods

 Features

 Labeling

 Segment Level Methods

 Features

 Grammar based Models

 Training Methods

 Inference Algorithms

TRAINING ALGORITHMS

 Model the score function s(y) such that the

best possible set of entities are returned

 Two kinds of Training

 Likelihood based training

Max-margin training

 Goal: maximise s(y)=w.f(x,y) , given ‘y’ is the

optimal set of entities

LIKELIHOOD TRAINER

 Maximises the Log likelihood of P(y|x) to get

the set of weights ‘w’ such that the probability

of outputting the correct y is maximised.

MAX MARGIN TRAINING

 Minimize the weights W such that margin

between scores of the correct labelling 𝑦𝑙 and y

is more than err(y,yl)

OVERVIEW

 Token Level Methods

 Features

 Labeling

 Segment Level Methods

 Features

 Grammar based Models

 Training Methods

 Inference Algorithms

INFERENCE ALGORITHMS

 Highest scoring (MAP) labeling

 Find y* = argmaxy w. f(x,y)

 Expected Feature Values

 To get the expected values of features f(x,𝑦𝑖)

 Find ∑y f(x,y)Pr(y|x)

MAP LABELING

 Dynamic Programming model

 Divide the sentence into two disjoint chunks S1

and S2.

 Take a subset S3 from S1 that provides enough

information to evaluate both S1 and S2

EXAMPLES

MAP LABELING

 Sequential Labeling

 V(i|y) be the maximum score till the position ‘I’ in the
string

 The set of entities Y that maximises V(n|y) is the
optimal set of entity labels

EXPECTED FEATURE VALUES

 Techniques to estimate the expected value of

the features of the tokens/segments in a

sentence

 Dynamic Programming model

 Expected output E(f(x,y))=∑y f(x,y)Pr(y|x)

EXPECTED FEATURE VALUES

 Z(x)=Σ𝑦 𝑒
𝑤.𝑓(𝑋,𝑦)

 Assuming that we know the value of Z till

token i-1, we calculate the value of Z at i

 Let α(i,y) = score of all labeled sequences

from 1 to i with label of i being ‘y’

 α(i,y)= α(i−1,y′) 𝑦′∈𝑌 ew.f(y,x,i,y’)

 Z(x)=Σ𝑦α(n,y)

EXPECTED FEATURE VALUES

 Let ηk(i,y) be the equivalent of α(i,y) for the kth

component in feature set f

ROADMAP

 Introduction

 Entity Extraction: Rule-based Methods

 Entity Extraction: Statistical Methods

 Relationship Extraction

 Management of Information Extraction Systems

RELATIONSHIP EXTRACTION

 Given a text snippet ‘x’ and two entities E1 and

E2 in the snippet, find the relationship between

the entities

 A scalar prediction as opposed to a vector

prediction problem in entity extraction

 Tough due to the diversity in syntactic and

semantic structure of sentences

OVERVIEW

 Clues

 Relationship extraction

 Extracting entity pairs given the relation

CLUES

 Surface Tokens

Words around and in-between the entities

 POS tags

 Two noun phrases will be connected by a verb

CLUES

 Syntactic Parse Trees

 Parse tree structure can show the relationship

between prominent phrases in the sentence

Useful for the example “Haifa, located 53 miles

from tel aviv will host ICML in 2010”

PARSE TREE FOR EXAMPLE

CLUES

 Dependency Parse of a sentence

 Edge from a word ‘a’ to word ‘b’ if there exists a

dependency between them

OVERVIEW

 Clues

 Relationship extraction

 Extracting entity pairs given the relation

EXTRACTION METHODS

 Feature Based

 Flat set of features

 Kernel Based

 Similarity calculation between trees and graphs

 Rule-based

FEATURE BASED METHODS

 Each word has a lot of properties associated

 String form, orthography, POS tag etc.

 Example: [[Entity 1=“Person”, Entity2=“Location”]]

 First set of features: Conjunctions of all

properties of the two tokens corresponding to

E1 and E2

 Most frequently co-occuring features define the

relationship

FEATURE BASED METHODS

 Word Sequences

 Unigram Features

 [[String=“host”, flag=“none”]]

 Bigram Features

 [[String=“host,ICML”, flags=(none,2), type=“sequence”]]

 Trigram Features

 [[string=“will,host,ICML”, flags=(none,none,2),

type=“sequence”]]

FEATURE BASED METHODS

 Dependency Graphs

 Similar to word sequences, but the bigrams and

trigrams are formed based on the dependencies

 Parse Trees

Unigram features include noun phrases and verb

phrases

New bigram and trigram features to show the path

from one node to other

EXAMPLE PARSE TREE

KERNEL METHOD

 Each training instance treated as a point in a
graph.

 To find the relationship between two entities in a
test sentence,

 Distance measured between sentence x and xi as
K(x,xi)

 K() is the kernel function

 Example:

OVERVIEW

 Clues

 Relationship extraction

 Extracting entity pairs given the relation

EXTRACTING ENTITY PAIRS

 Given a relationship, extract corresponding entity

pairs

 Useful in searching for all the occurrences of a

relation ‘r’ in the corpus

 Training set

 Entity types that can possbily correspond to that

relation

 Examples of words that can correspond to that relation

 Manually coded patterns

LEARNING

 Create (E1,E2,r) triplets

 Prune away infrequently occurring triples

 Learn patterns from the seed examples

LEARNING PATTERNS

 Entity extraction for all the seed entities

 Extract relation patterns for these entity

instances

 Challenge: differentiating between the different

relationships between the two entities

 Treat each sentence containing both entities as

an independent training instance and classify

using SVMs

USING THE MODEL ON CORPUS

 For each relation r, go through each sentence

and search for entity pairs that have that

relation ‘r’ in the training set

 Pattern based extraction

 Look for occurrences of particular set of words like

‘E1 is working for E2’

 Keyword based

 Prune away sentences based on keyword searches

SUMMARY

 Validation necessary to avoid snowballing of

training data errors

 Relationship extraction has typically 50-70%

accuracy

 Needs lot of special case handling dependent

on the particular dataset

ROADMAP

 Introduction

 Entity Extraction: Rule-based Methods

 Entity Extraction: Statistical Methods

 Relationship Extraction

 Management of Information Extraction Systems

MAIN ISSUES

 Performance Optimization

 Handling Change

 Integration of Extracted Information

 Imprecision of Extraction

PERFORMANCE OPTIMIZATION

 Document Selection

 Trade off between recall and time

Focused crawling

Searching via keywords

Filtering documents after fetching them using a classifier

PERFORMANCE OPTIMIZATION

 Index Search

Keyword queries

Usually for subject filtering

E.g. “vaccine” and “cure” -> documents containing

disease outbreaks

 Pattern queries

Finer grained filtering of entities of interest

E.g. “[Mr. | Dr. | Mrs.] Initial_Dot Capitalized_Word”

PERFORMANCE OPTIMIZATION

 Index Design

 … for Efficient Extraction

 Provide support for proximity queries, regular
expression patterns

 Allow efficient storage of tags

 POS

 Phrase tags

 Common entity tags, e.g. person/company names

 Possible solutions for regular expression

 Suffix trees

 q-gram index

PERFORMANCE OPTIMIZATION

 Other Optimizations

 Efficiency in querying entity databases

Optimizing for expensive feature evaluation

Relational engine style frameworks

HANDLING CHANGES

 Incremental Extraction on Changing Sources

Use Unix diff or suffix tree to detect changes

Run extractor only on changed portions

 Detecting When Extractors Fail on Evolving

Data

Defining Characteristic Patterns

Detecting Significant Change

INTEGRATION OF EXTRACTED INFORMATION

 Decoupled Extractions and Integration

 Binary classifier for deciding whether two input records are

duplicates

 Trained classifier, e.g. SVM

 Manually defined rules

 Decision tree

INTEGRATION OF EXTRACTED INFORMATION

 Decoupled Extraction and Collective Integration

R1. Alistair MacLean

R2. A Mclean

R3. Alistair Mclean

INTEGRATION OF EXTRACTED INFORMATION

 Coupled Extraction and Integration

 “In his foreword to Transaction Processing Concepts

and Techniques, Bruce Lindsay”

Book names containing entry “Transaction

Processing: Concepts and Techniques.”

 People names containing “A. Reuters”, “B. Lindsay”,

“J. Gray”

 Authors table linking book title with people

IMPRECISION OF EXTRACTION

 Confidence Values for Single Extractions

 Attach a probability to each possible outcome of an

extraction

 Total probability normalized to 1

IMPRECISION OF EXTRACTION

 Multi-attribute Extractions

IMPRECISION OF EXTRACTION

 Multiple Redundant Extractions

 Two kinds of uncertainties

Single source extraction uncertainty

Co-reference uncertainty

SUMMARY

 Applications

 Rule-based and statistical methods for entity
extraction

 Statistical methods for relation extraction

 Practical issues

