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ISSUES TO BE ADDRESSED 

 What is Information Extraction? 

 Why do we need Information Extraction after all 

(applications)? 

 What is/are the formal problem definition(s)? 

 What are the approaches people have taken? 

 What are the challenges? 



WHAT IS INFORMATION EXTRACTION…? 

 In one sentence: automatic extraction of 

structured information from unstructured 

sources 

 Input: unstructured sources 

Output: structured information 



INPUT AND OUTPUT 

 Type of unstructured source (input) 
 Granularity 

 Records, sentences 
 <inst> Duke University </inst>, <city> Durham </city>, <state> NC 

</state>, <zipcode> 27708 </zipcode> 

 Paragraphs, documents, etc. 

 Heterogeneity 
Machine generated pages, partially structured domain specific 

sources, open ended sources, etc. 

 

 Type of structure extracted (output) 
 Entities, relationships, lists, tables, attributes, etc. 



WHY INFORMATION EXTRACTION? 

 Structured information is much easier to 

handle by computers 



APPLICATIONS 

 Enterprise 

News tracking 

 Customer care 

Data cleaning 

 Personal information management 

 Scientific applications 

 



APPLICATIONS (CONT’D) 

 Web oriented applications 

 Citation databases 

Opinion databases 

 Community websites 

 Comparison shopping 

 Ad placement on webpages 

 Structured web searches 

 



OTHER KEY COMPONENTS 

 Type of input resources available for extraction 

 Structured databases, labeled unstructured data, 

linguistic tags, etc. 

 Method used for extraction 

Rule-based, statistical 

Manually coded, trained from examples 

 Representation of output 

 Annotated unstructured text, database 

 



CHALLENGES 

 Accuracy 

Diversity of clues 

Difficulty of detecting missed extractions 

 Increased complexity of the structures extracted 

 Efficiency (running time) 

 Other systems issues 

Dynamically changing sources 

Data integration 

 Extraction errors 



A BRIEF HISTORY 

 Rooted in the Natural Language Processing (NLP) community 

 Scope extended by two competitions 

 Message Understanding Conference (MUC) 

 Automatic Content Extraction (ACE) 

 Now spanning 

 Machine learning 

 Information retrieval 

 Database 

 Web 

 Document analysis 
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OVERVIEW 

 Extraction handled through a collection of rule 

 How are rules obtained? 

Manually coded 

 Learnt from example labeled sources 

 How to control the firings of multiple rules? 



BASIC FORM OF A RULE 

 Contextual pattern -> Action 

Use the pattern to match unstructured source 

 If matched, take the action 

 



FEATURES OF TOKENS 

 String 

 Orthography type 

 E.g. Capitalized word, smallcase word, mixed case word, 

number, special symbol, space, punctuation, etc. 

 List of dictionaries in which the token appears 

 E.g. “DictionaryLookup = start of city” 

 Annotations attached by earlier processing steps 



RULE TYPE I – SINGLE ENTITY 

 ({DictionaryLookup = Titles}{String = “.”} 
{Orthography type = capitalized word}{2}) -> 
Person Names. 

Matches person names such as “Dr. Jun Yang” 

 

 ({String = “by”|String = “in”}) ({Orthography 
type = Number}):y -> Year=:y. 

Matches any number following “by” or “in” 

 Could be used to extract Year entity 

 



RULE TYPE I – SINGLE ENTITY 

 A simple exercise 

 ({String = “The”}? {Orthography type = All 

capitalized} {Orthography type = Capitalized word, 

DictionaryType  Company end}) -> Company name. 

 

 



RULE TYPE II – MARK ENTITY BOUNDARIES 

 ({String=“to”} {String = “appear”} {String=“in”)):jstart 

({Orthography type = Capitalized word}{2-5}}) -> insert 

<journal> after:jstart 

 Annotation, may be used by following processing steps 

 



RULE TYPE III – MULTIPLE ENTITIES 

 ({Orthography type = Digit}):Bedrooms ({String=“BR”}) 

({}*) ({String =“$”}) ({Orthography type = 

Number}):Price -> Number of Bedrooms = :Bedrooms, 

Rent = :Price 



ORGANIZING COLLECTION OF RULES 

 Custom policies to resolve conflicts 
 Prefer rules matching a longer span 

 Prefer higher priority in case of a tie 

 Merge the spans of text that overlap 
 Only if action part is the same 

 Rules arranged as an ordered set 
 R1: ({String=“to”} {String=“appear”} {String= 

“in”}) :jstart ({Orthography type = Capitalized word}{2-5}) 
-> insert <journal> after :jstart 

 R2: {tag = <journal>}({Orthography type=word}+):jend 
{String = “vol”} -> insert </journal> after :jend 



HOW ARE RULES FORMULATED? 

 Manually coded by a domain expert 

 Learnt automatically… 

…from labeled examples of entities in unstructured 

text 

 Trying to achieve 

High coverage 

High precision 

With a small set of rules 



RULE LEARNING ALGORITHMS 

 Rset = set of rules, initially empty 

 While there exists an entity x not covered by 

any rule in Rset 

 Form new rules around x 

 Add new rules to Rset 

 Post process rules to prune away redundant 

rules 



HOW TO FORM NEW RULES? 

 Bottom-up rule formulation 

Generalize a specific rule 

 Top-down rule formulation 

 Elaborate a generalized rule 
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STATISTICAL METHODS 

 Decompose text into parts and model 

distributions to label each part jointly or 

independently 

 Decomposition done either into  

  Tokens (single word) 

  Segments (Group of words) 
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NOTATION 

 ‘X’ denotes the given sentence 

 xi denotes each token/segment 

 Y is the set of labels (entity labels) for X 

 yi is the label for segment xi 

 yi  can be either an entity from a predefined set 

of entity types or “other” if it does not belong to 

any entity type 



TOKEN-LEVEL METHODS 

 Decompose the text ‘X’ into individual words xi 

 Convert the sentence into set of labels Y={yi} 

 



EXAMPLES 



TYPES OF TOKENS 

 Two styles of encoding 

  BCEO (Begin, Continue, End, Other) 

  BIO (Begin, Inside, Other) 

 Similar to Classification 
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FEATURES 

 Clues/features designed to understand the 

properties of a token and the context of its 

position in the text 

 f: (x,y,i) → R 

 R can be boolean or be  a probability value to 

show the score/possibility of a token ‘y’ being 

assigned to x_i 



FEATURES 

 Word Features 

  f (y,x,i)= [[ Xi equals Fagin]].[[y= Author]] 

 Orthographic Features 

 Capitalization patterns, placement of dots etc 

 f(y,x,i)=[[xi matches INITIAL_DOT 

capsWord]].[[y=Author]] 

 Dictionary Lookup Features 

  Direct matches from a set of seed examples 

 



OVERVIEW 

 Token Level Methods 

  Features 

  Labeling 

 Segment Level Methods 

  Features 

 Grammar based Models 

 Training Methods 

 Inference Algorithms 

 

 

 



TOKEN LABELING 

 Either independent of all other tokens or 
dependant on the previously labeled ones 

 SVMs to classify them independently 

 Each token in the test set treated as a data point and 
the features as the axes 

 Dependency calculation 

  HMMs 

  Maximum Entropy Taggers (ME Markov Models) 

 Conditional Markov Models 

  Conditional Random Fields 

 



CONDITIONAL RANDOM FIELDS (CRF) 

 Models a joint distribution P(y|x) over the set of 

predicted labels for tokens in x 

 Tractable due to Markov Random Field 

assumption 

 A label yi only depends on the features of xi and 

the previous label yi-1  

 Features changes from f(yi,x, i) to f(yi, x, i, yi-1) 

 

 



CONDITIONAL RANDOM FIELDS 



OVERVIEW 

 Token Level Methods 

  Features 

  Labeling 

 Segment Level Methods 

  Features 

 Grammar based Models 

 Training Methods 

 Inference Algorithms 

 

 

 



SEGMENT-LEVEL METHODS 

 Divide text into segments rather than individual 

tokens 

 Useful to calculate entity dependencies 

 Problem: How do we determine Segment 

boundaries ? Inference 

 



OVERVIEW 

 Token Level Methods 

  Features 

  Labeling 

 Segment Level Methods 

  Features 

 Grammar based Models 

 Training Methods 

 Inference Algorithms 

 

 

 



FEATURES 

 Features defined over segments/multiple 

tokens 

 More easy to map exact matches to a 

dictionary 

 Use TFIDF in features to get rid of noise in 

unstructured text 

 



SEGMENTATION MODELING 

 Similar to Token label modeling  

 Done on a group of tokens rather than 

individual tokens 

  f(x,s)= 𝑓(𝑦𝑗 , 𝑥, 𝑙𝑗 , 𝑢𝑗 , 𝑦𝑗−1)
|𝑠|
𝑗=1  



OVERVIEW 

 Token Level Methods 
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 Segment Level Methods 

  Features 

 Grammar based Models 

 Training Methods 

 Inference Algorithms 

 

 

 



GRAMMAR BASED MODELS 

 A context free grammar for each entity 

 For each segment, output a parse tree for each 

grammar 

 Label entity to the segment if 

  Segment accepted by the grammar 

  maximum score is used for labeling  

 



GRAMMAR BASED MODELS 

 Example 
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TRAINING ALGORITHMS 

 Model the score function s(y) such that the 

best possible set of entities are returned 

 Two kinds of Training 

 Likelihood based training 

Max-margin training 

 Goal: maximise s(y)=w.f(x,y) , given ‘y’ is the 

optimal set of entities 

 

 



LIKELIHOOD TRAINER 

 Maximises the Log likelihood of P(y|x) to get 

the set of weights ‘w’ such that the probability 

of outputting the correct y is maximised.  

 

 



MAX MARGIN TRAINING 

 Minimize the weights W such that margin 

between scores of the correct labelling 𝑦𝑙 and y 

is more than err(y,yl)  

 



OVERVIEW 
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INFERENCE ALGORITHMS 

 Highest scoring (MAP) labeling 

 Find y* = argmaxy  w. f(x,y) 

 Expected Feature Values 

  To get the expected values of features f(x,𝑦𝑖) 

 Find ∑y f(x,y)Pr(y|x) 

 



MAP LABELING 

 Dynamic Programming model 

 Divide the sentence into two disjoint chunks S1 

and S2. 

 Take a subset S3 from S1 that provides enough 

information to evaluate both S1 and S2  

 



EXAMPLES 



MAP LABELING 

 Sequential Labeling  

 V(i|y) be the maximum score till the position ‘I’ in the 
string 

 

 

 

 The set of entities Y that maximises V(n|y) is the 
optimal set of entity labels 

 

  

 



EXPECTED FEATURE VALUES 

 Techniques to estimate the expected value of 

the features of the tokens/segments in a 

sentence 

 Dynamic Programming model 

 Expected output E(f(x,y))=∑y f(x,y)Pr(y|x) 

 



EXPECTED FEATURE VALUES 

 Z(x)=Σ𝑦 𝑒
𝑤.𝑓(𝑋,𝑦) 

 Assuming that we know the value of Z till 

token i-1, we calculate the value of Z at i 

 Let α(i,y) = score of all labeled sequences 

from 1 to i with label of i being ‘y’ 

 α(i,y)= α(i−1,y′) 𝑦′∈𝑌 ew.f(y,x,i,y’) 

 Z(x)=Σ𝑦α(n,y) 

 



EXPECTED FEATURE VALUES 

 Let ηk(i,y)  be the equivalent of α(i,y) for the kth 

component in feature set f 
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RELATIONSHIP EXTRACTION 

 Given a text snippet ‘x’ and two entities E1 and 

E2 in the snippet, find the relationship between 

the entities 

 A scalar prediction as opposed to a vector 

prediction problem in entity extraction 

 Tough due to the diversity in syntactic and 

semantic structure of sentences 



OVERVIEW 

 Clues 

 Relationship extraction 

 Extracting entity pairs given the relation 



CLUES 

 Surface Tokens 

Words around and in-between the entities 

 

 

 POS tags 

  Two noun phrases will be connected by a verb 

 

 



CLUES 

 Syntactic Parse Trees 

 Parse tree structure can show the relationship 

between prominent phrases in the sentence 

Useful for the example “Haifa, located 53 miles 

from tel aviv will host ICML in 2010” 

 

 

 

 

 



PARSE TREE FOR EXAMPLE 



CLUES 

 Dependency Parse of a sentence 

 Edge from a word ‘a’ to word ‘b’  if there exists a 

dependency between them 

 



OVERVIEW 

 Clues 

 Relationship extraction 

 Extracting entity pairs given the relation 



EXTRACTION METHODS 

 Feature Based 

 Flat set of features 

 Kernel Based 

 Similarity calculation between trees and graphs 

 Rule-based 



FEATURE BASED METHODS 

 Each word has a lot of properties associated 

 String form, orthography, POS tag etc. 

 Example: [[Entity 1=“Person”, Entity2=“Location”]] 

 First set of features: Conjunctions of all 

properties of the two tokens corresponding to 

E1 and E2 

 Most frequently co-occuring features define the 

relationship 

 



FEATURE BASED METHODS 

 Word Sequences 

  Unigram Features 

 [[String=“host”, flag=“none”]] 

  Bigram Features 

 [[String=“host,ICML”, flags=(none,2), type=“sequence”]] 

  Trigram Features 

 [[string=“will,host,ICML”, flags=(none,none,2), 

type=“sequence”]] 



FEATURE BASED METHODS 

 Dependency Graphs 

 Similar to word sequences, but the bigrams and 

trigrams are formed based on the dependencies 

 Parse Trees 

Unigram features include noun phrases and verb 

phrases 

New bigram and trigram features to show the path 

from one node to other  



EXAMPLE PARSE TREE 



KERNEL METHOD 

 Each training instance treated as a point in a 
graph. 

 To find the relationship between two entities in a 
test sentence, 

 

 

 Distance measured between sentence x and xi as 
K(x,xi) 

 K() is the kernel function 

 Example:  
 



OVERVIEW 

 Clues 

 Relationship extraction 

 Extracting entity pairs given the relation 



EXTRACTING ENTITY PAIRS 

 Given a relationship, extract corresponding entity 

pairs  

 Useful in searching for all the occurrences of a 

relation ‘r’ in the corpus  

 Training set 

 Entity types that can possbily correspond to that 

relation 

 Examples of words that can correspond to that relation 

 Manually coded patterns 



LEARNING 

 Create (E1,E2,r) triplets 

 Prune away infrequently occurring triples 

 Learn patterns from the seed examples 

 



LEARNING PATTERNS 

 Entity extraction for all the seed entities 

 Extract relation patterns for these entity 

instances 

 Challenge: differentiating between the different 

relationships between the two entities 

 Treat each sentence containing both entities as 

an independent training instance and classify 

using SVMs 



USING THE MODEL ON CORPUS 

 For each relation r, go through each sentence 

and search for entity pairs that have that 

relation ‘r’ in the training set 

 Pattern based extraction 

 Look for occurrences of particular set of words like 

‘E1 is working for E2’ 

 Keyword based 

 Prune away sentences based on keyword searches 



SUMMARY 

 Validation necessary to avoid snowballing of 

training data errors 

 Relationship extraction has typically 50-70% 

accuracy 

 Needs lot of special case handling dependent 

on the particular dataset 
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MAIN ISSUES 

 Performance Optimization 

 Handling Change 

 Integration of Extracted Information 

 Imprecision of Extraction 



PERFORMANCE OPTIMIZATION 

 Document Selection 

 Trade off between recall and time 

Focused crawling 

Searching via keywords 

Filtering documents after fetching them using a classifier 



PERFORMANCE OPTIMIZATION 

 Index Search 

Keyword queries 

Usually for subject filtering 

E.g. “vaccine” and “cure” -> documents containing 

disease outbreaks 

 Pattern queries 

Finer grained filtering of entities of interest 

E.g. “[Mr. | Dr. | Mrs.] Initial_Dot Capitalized_Word” 



PERFORMANCE OPTIMIZATION 

 Index Design 

 … for Efficient Extraction 

 Provide support for proximity queries, regular 
expression patterns 

 Allow efficient storage of tags 

 POS 

 Phrase tags 

 Common entity tags, e.g. person/company names 

 Possible solutions for regular expression 

 Suffix trees 

 q-gram index  

 



PERFORMANCE OPTIMIZATION 

 Other Optimizations 

 Efficiency in querying entity databases 

 

Optimizing for expensive feature evaluation 

 

Relational engine style frameworks 



HANDLING CHANGES 

 Incremental Extraction on Changing Sources 

Use Unix diff or suffix tree to detect changes 

Run extractor only on changed portions 

 

 Detecting When Extractors Fail on Evolving 

Data 

Defining Characteristic Patterns 

Detecting Significant Change 

 



INTEGRATION OF EXTRACTED INFORMATION 

 Decoupled Extractions and Integration 

 Binary classifier for deciding whether two input records are 

duplicates 

 Trained classifier, e.g. SVM 

 Manually defined rules 

 Decision tree 

 



INTEGRATION OF EXTRACTED INFORMATION 

 Decoupled Extraction and Collective Integration 

R1. Alistair MacLean 

R2. A Mclean 

R3. Alistair Mclean 



INTEGRATION OF EXTRACTED INFORMATION 

 Coupled Extraction and Integration 

 “In his foreword to Transaction Processing Concepts 

and Techniques, Bruce Lindsay” 

Book names containing entry “Transaction 

Processing: Concepts and Techniques.” 

 People names containing “A. Reuters”, “B. Lindsay”, 

“J. Gray” 

 Authors table linking book title with people 



IMPRECISION OF EXTRACTION 

 Confidence Values for Single Extractions 

 Attach a probability to each possible outcome of an 

extraction 

 Total probability normalized to 1 



IMPRECISION OF EXTRACTION 

 Multi-attribute Extractions 



IMPRECISION OF EXTRACTION 

 Multiple Redundant Extractions 

 Two kinds of uncertainties 

Single source extraction uncertainty 

Co-reference uncertainty 



SUMMARY 

 Applications 

 

 Rule-based and statistical methods for entity 
extraction 

 

 Statistical methods for relation extraction 

 

 Practical issues 


