
Collaborative Querying &
Visualizing to improve on
standard Information
Retrieval
David Crowe

Improving Information Retrieval (IR)

•  Problem:
o  missing/unhelpful results

•  Suppose a user searches for "Subway"...

Improving Information Retrieval (IR)

•  Problem:
o  missing/unhelpful results

•  Causes:
o  users unfamiliar with Information Retrieval(IR) ops
o  vocab mismatches
o  context/semantics

•  To Solve it:
o  Use past queries to identify strongly-related queries
o  Show these similar queries, let user explore/learn

Categorizing Similarity

•  Term-Based: (query = "bag of terms")

- query attributes ONLY (Query Term Vectors)

•  Result-Based: (query = "result of executing")

- result attributes ONLY (Term Vectors, URLs)

•  Feedback-Based: (query = "relevant results")

- result attributes AND clickthrough-data

•  Community-Based: (consider interests of the user)

- subsets of queries by user affiliation

Google's Search & Ad Data

Supposed to be at:
https://www.google.com/settings/ads/onweb/

How Query Graph Visualization does
similarity + clustering

•  To avoid term/result-based drawbacks, QGV defines
'hybrid_similarity' for queries Qi,Qj (ALPHA+BETA=1):
o  hybrid_similarity(Qi,Qj) =

ALPHA*result_similarity(Qi,Qj) + BETA*term_similarity(Qi,Qj) •  A cluster on some node Qi is a list of nodes Qj that are
similar by more than 'some number' THRESHOLD:
o  hybrid_similarity(Qi,Qj) ≥ THRESHOLD

•  The team found the best result given when:
o  ALPHA = 0.75 | BETA = 0.25 | THRESHOLD = 0.9

The Query Graph (QGV)

Functionality:
o  Generate clusters to form a

Query Network graph

o  Allow users to explore the
graph visually

Visualization:
o  cluster = directly connected
o  root query = white

o  depth from root = lightness

o  similarity = edge coefficient

Navigating and Searching

•  Toolbar:
o  zoom: shrink/grow view
o  rotate: view from different

directions
o  locality zooming: set network

depth to draw

•  Node Controls (popup):
o  Search via outside IR provider
o  Make Root Node
o  Expand/Collapse

QGV Displaying Clusters (Visual)

Evaluation

Do you think this could be
extended to SQL?

Any application to your
projects?

Can we take it further?

Did they achieve their goal?

Other thoughts

•  Link to paper 'Nielsen' ratings (Evaluation):
http://dl.acm.org/citation.cfm?doid=191666.191729

 I haven't read it, but it sounded
interesting.

•  Optimization:
o  Given a query Q in the DB that matches some result

document, replace the document with Q [document
surrogate] since it is a fair description. In tests this
boosts performance by almost 30%. (Billerbeck et
al. (2003))

