

Query Recommendations for Interactive Database Exploration

Work by
Gloria Chatzopoulou*, UC Riverside
Magdalini Eirinaki, San Jose State Univ
Neoklis Polyzotis, UC Santa Cruz

Presented by Wuzhou Zhang

Motivation

- Scientific community rely increasingly on relational databases
- Users, with diverse information needs, employ a web-based client to issue
 SQL queries for data analysis
- Users may find it hard to write *interesting* queries:
 - > They are not SQL experts
 - > They are not aware of all parts of the database

Goal: Assist users in finding useful information

Ė

Proposed Solution

- Recommend queries to users based on the queries of other similar users
- Inspiration: Collaborative Filtering
- Example: Movie Recommendations

If Alice and Bob **both** like movie X and Alice likes movie Y
If Alice and Bob **both** query data X and Alice queries data Y

then then

Bob is likely to be interested in seeing movie Y Bob is likely to be interested in querying data Y

٦

System Architecture

Conceptual Framework

Session Representation

R	а	b	L	а	C
	у	3		У	9
	S	4		s	3
	W	3		s	5
	r	2		t	8

q1: $R \bowtie_{R.a=L.a} L$

q2: $\sigma_{R,b=4}$ (FM $_{R,a=L,a}$ L)

Binary Weighting Scheme

$$q1 = <1,1,0,0,1,1,1,0>$$

$$q2 = <0,1,0,0,0,1,1,0>$$

$$s0 = <1,2,0,0,1,2,2,0>$$

Result Weighting Scheme

$$q1 = <0.33,0.33,0,0,0.33,0.33,0.33,0>$$

$$q2 = <0,0.50,0,0,0,0.50,0.50,0>$$

$$s0 = <0.33, 0.83, 0, 0, 0.33, 0.83, 0.83, 0>$$

Similarity Function

- Vector-space similarity functions can be used
 - Cosine Similarity

$$sim(S_i, S_j) = \frac{S_i S_j}{\|S_i\|_2 \|S_j\|_2}$$

 High similarity means that users are most likely interested in the same parts of the database 7

Predicted Summary

$$S_0^{\text{pred}} = \alpha * S_0 + (1 - \alpha) * \frac{\sum_{1 \le i \le h} sim(S_0, S_i) \cdot S_i}{\sum_{1 \le i \le h} sim(S_0, S_i)}$$

α: the mixing factor

Generating Recommendations

3/30/12

Experimental Setup

- SkyServer Dataset
- Evaluation Metrics: Precision and Recall
 - High precision: most witnesses of the recommended query are witnesses in the actual query.
 - High Recall: most witnesses of the actual query are witnesses in the recommended query.

Database size	2.6TB
#Sessions	720
#Queries	6713
#Distinct queries	4037
#Distinct witnesses	13,602,430
Avg. number of queries per session	9.3
Min. number of queries per session	3

Binary vs Result Weighting Schemes

Binary outperforms Result Weighting Scheme

Effect of mixing factor α

Hybrid Collaborative Filtering yields better results

Top-3 vs Top-5 Binary Weights

The bigger recommendation set the higher accuracy

Discussion

- Performance improvement
- Though we can return the same tuple, queries might be different
- Query structure instead of tuples retrieved
- Correlation between sequence of queries (causality, incremental)
- Extension: automatically import other relations
- Relation to our project?

Recent work: fragment-based (attribute ref, tables ref, join and selection predicates)

15

Thanks!

◆ Reference

- > "Query Recommendations for Interactive Database Exploration." Chatzopoulou, Eirinaki, and Polyzotis. *SSDBM* 2009.
- http://www.cs.washington.edu/education/courses/cse599c/10sp/lecture7/ querie.pdf
- http://ssdbm09.cs.uno.edu/papers/3b.pdf
- http://www.engr.sjsu.edu/meirinaki/papers/CE+11-IEEEDebul.pdf