![]() |
CPS 210 Operating Systems | ![]() |
|||||
|
|||||||
This course gives an introduction to systems concepts and operating systems. Traditionally the course emphasizes classical operating systems topics: concurrency, facilities for storage, communication, and protection, kernel services and structure, architecture/OS interaction, distributed systems, and practical application of operating system concepts in real operating systems. We also explore the nature of "systems" as an evolving discipline encompassing all aspects of bridging the gap between applications and hardware.
More broadly, an operating system is software that controls some programmable platform for sharing resources and data. All operating systems must deal with core issues of protection, resource management, program environment and execution, coordination, and reliable state storage and recovery. Various programming systems ranging from cloud services to Web frameworks to programmable networks to browsers meet our definition of a "programmable platform". About half the course focuses on classical OS topics; the other half covers other principles and topics that are important for understanding modern networked software ecosystems.
The prerequisites for this course are introductory programming (e.g., CPS 100) and basic computer architecture (e.g., CPS 104). The intended audience is computer science undergraduates and graduate students needing a background in systems. Welcome to the Machine [PDF] is a quick-and-dense overview of relevant computer architecture: if it mostly makes sense to you, then you'll be OK.
There is no required textbook. Several texts are available and may be worth the investment: see the intro lecture notes. Operating Systems in Three Easy Pieces (OSTEP) is an excellent resource for at least the first half of the course. There is lots of useful material in the classic computer systems textbook Bryant/O'Hallaron CS:APP.
More course policies
Exam FAQ about exams in this class
Chase's CPS
undergrad-OS archive