
Asynchronous programming &
Crypto

COMPSCI210 Recitation

25th Mar 2013

Vamsi Thummala

Reminder on Java synchronized

• Combines: a lock and a CV

• In your Elevator, if you implement
EventBarrier correctly, you only need
locking, but not a CV
– Java does not provide a way to do that
directly

– Locks are in turn implemented using
“synchronized” as a library

– java.util.concurrent.locks

– Restricted for Elevator lab

java.util.concurrent

• Lock

• Thread safe collections
– HashMap, Queue, and ..

• Semaphore

• CyclicBarrier

• ExecutorService
– Thread pool

• FutureTask

Thread pooling

public class SumFirstN implements
Runnable {

 private final int _N;

 SumFirstN(int N) {

 _N = N;

 }

 @Override

 public void run() {

 long sum = 0;

 for (int i = 1; i < _N; i++) {

 sum += i;

 }

 System.out.println(sum);

 }

}

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

public class Main {

 private static final int NTHREDS = 10;

 public static void main(String[] args) {

 ExecutorService executor =
Executors.newFixedThreadPool(NTHREDS);

 for (int i = 0; i < 500; i++) {

 Runnable worker = new SumFirstN(i);

 executor.execute(worker);

 }

 executor.shutdown(); // Do not accept any more
threads

 // Wait until all threads are finish

 while (!executor.isTerminated()) {

 }

 }

}

What if each task is an IO or
a network call?

• May take arbitrary amount of time
to complete

• Each thread submit a task and just
waits!

• Waste of resources

Asynchronous call

• Similar interface as Runnable
public class CallBackTask implements Callable {

public void call() {

}

}

Using Callable

public class SumFirstN implements
Callable {

 private final int _N;

 SumFirstN(int N) {

 _N = N;

 }

 @Override

 public void call() {

 long sum = 0;

 for (int i = 1; i < _N; i++) {

 sum += i;

 }

 System.out.println(sum);

 }

}

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

public class Main {

 private static final int NTHREDS = 10;

 public static void main(String[] args) {

 ExecutorService executor =
Executors.newFixedThreadPool(NTHREDS);

 for (int i = 0; i < 500; i++) {

 Callable worker = new SumFirstN(i);

 executor.execute(worker);

 }

 executor.shutdown(); // Do not accept any more
threads

 // Wait until all threads are finish

 while (!executor.isTerminated()) {

 }

 }

}

What if we expect a result
from a callback?

• Typically, a read on disk

• A Future can capture the result of
an asynchronous computation

Future<Long> sum = executor.submit(new
Callable<Integer>()

Using Callable with Future

public class SumFirstN implements
Callable {

 private final int _N;

 SumFirstN(int N) {

 _N = N;

 }

 @Override

 public Long call() {

 long sum = 0;

 for (int i = 1; i < _N; i++) {

 sum += i;

 }

 return sum;

 }

}

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

public class Main {

 private static final int NTHREDS = 10;

 List<Future<Long>> list = new ArrayList<Future<Long>>();

 public static void main(String[] args) {

 ExecutorService executor =
Executors.newFixedThreadPool(NTHREDS);

 for (int i = 0; i < 500; i++) {

 Callable worker = new SumFirstN(i);

 Future<Long> sW = executor.execute(worker);

 list.add(sW);

 }

 // Now retrieve the result

 for (Future<Long> future : list) {

 long sum = future.get(); // ignored the try/catch block

 }

 executor.shutdown(); // Do not accept any more threads

 // Wait until all threads are finish

 while (!executor.isTerminated()) {

 }

 }

}

Asynchronous programming

• Event driven
– Awaiting for IO

– Awaiting for input for network

– Awaiting for input from user
• GUI, Mobile device (Android)

• Java Future library
– Primitive but powerful stuff

– More native support in other languages

• You will be doing callbacks in Lab4

Crypto: Concept checkers

• What is the basic assumption that
cryptography relies on?

• What is a hash/finger print/digest?

• What is a digital signature?

• Symmetric vs Asymmetric crypto

• What is a nonce?

• What is a security/treat model?

• Type of attacks and defenses

Crypto: Q from past midterm

“Cryptographic hash functions (also called secure hashing
or SHA) are useful even if the result

digest (also called a hash or fingerprint) is not
encrypted, as it is with digital signatures. For

example, if Alice knows a secret, and passes Bob a digest
of the secret, then Bob can determine

if another party also knows the secret, even without
knowing the secret himself.”

Symmetric and Asymmetric Crypto:
Better Together

• Use asymmetric crypto to “handshake” and establish a secret
session key (slow, but allows for key distribution).

• Then use the key to talk with symmetric crypto (fast and cheap)

• Example: Secure Sockets Layer (SSL) or Transport-Layer
Security (TLS), used in HTTPS (Secure HTTP), SSH, SCP, etc.

“SYN, etc.”

“My public key is K.”

Client Server

“Let’s establish a session key:

{S}K .” {M}S

…

[encrypted data or content]

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

