
A (quick) retrospect

COMPSCI210 Recitation

22th Apr 2013

Vamsi Thummala

Latency Comparison

L1 cache reference 0.5 ns

Branch mispredict 5 ns

L2 cache reference 7 ns 14x L1 cache

Mutex lock/unlock 25 ns

Main memory reference 100 ns 20x L2 cache, 200x L1 cache

Compress 1K bytes with Zippy 3,000 ns

Send 1K bytes over 1 Gbps network 10,000 ns 0.01 ms

Read 4K randomly from SSD 150,000 ns 0.15 ms

Read 1 MB sequentially from memory 250,000 ns 0.25 ms

Round trip within same datacenter 500,000 ns 0.5 ms

Read 1 MB sequentially from SSD 1,000,000 ns 1 ms 4X memory

Disk seek 10,000,000 ns 10 ms 20x data center roundtrip

Read 1 MB sequentially from disk 20,000,000 ns 20 ms 80x memory, 20X SSD

Send packet CA->Netherlands->CA 150,000,000 ns 150 ms

Abstractions: Beauty and Chaos

✔ Context
✔ Component
✔ Connector
✔ Channel
✔ Event
✔ Entity
✔ Identity
✔ App
✔ Signature

✔ Attribute
✔ Label
✔ Principal
✔ Reference Monitor
✔ Subject
✔ Object
✔ Guard
✔ Service
✔ Module

Case Study: Unix

• Example program:
cat compsci210.txt | wc | mail -s "word count" chase@cs.duke.edu

• Component: Executable program

• Context: Process that executes the
component

• Connector: Pipes

• In general, an OS:
– Sets up the context

– Enforces isolation

– Mediates interaction

mailto:chase@cs.duke.edu

Case Study: Unix protection

• Excerpt from “Notes on Security”:
 The Unix example exposes some principles that generalize

to other systems. In general, all of the OS platforms we
consider execute programs (or components, or modules) in
processes (or some other protected context, or sandbox,
or protection domain) on nodes linked by communication
networks. A platform's protection system labels each
running program context with attributes representing
“who it is”, and uses these labels to govern its
interactions with the outside world.

Reference
monitor

Object
Do

operationPrincipal

GuardRequestSource Resource

More on Protection

Principal may do Operation on Object

Chase Read dFile

Alice Pay invoice 4325 Account Q34

Bob Fire three rounds Bow gun

Reference
monitor

Object
Do

operationPrincipal

GuardRequestSource Resource

Principles for Computer System Design, Turing Award Lecture, 1983

Authentication: Who sent a message?
Authorization: Who is trusted?
•Principal: Abstraction of “who”
• People: Chase, Alice
• Services: DeFiler

Case Study: Android

• What is a component?
– Types of components?

• What is an App?

• What is a Binder service?

• What is a Zygote?
– Why does Andorid context needs just a
fork() but not exec()?

• How does Android protection differs
from Unix?

Prof. Chase slides

Concurrency

• Mutual exclusion
– Lock/mutex; too much milk

• Monitor
– CV + mutex; scheduling threads; ping-pong

• Semaphore
– Numeric resources; producer-consumer soda example

• EventBarrier
– Scheduling in phases/batches; Elevator

• Implement one primitive in terms of the other
– E.g., Implement a Semaphore using only a monitor

Performance

• Single node OS

– Latency/Response time

– Throughput

• Internet Scale systems

– Consistency

– Availability

– Partition Tolerance

– Incremental scalability

cost

capacity

not
scalable scalable

Servers Under Stress

Ideal

Overload
Thrashing
Collapse

Load (concurrent requests, or arrival rate)

[Von Behren]

Request arrival rate (offered load)

Response
rate

(throughput)

Response
time

saturation

Crypto: Concept checkers

• What is the basic assumption that
cryptography relies on?

• What is a hash/finger print/digest?

• What is a digital signature?

• Symmetric vs Asymmetric crypto

• What is a nonce?

• What is a security/treat model?

• Type of attacks and defenses

10%
quantile

90%
quantile

median

80% of the requests have
response time r with x1 < r < x2.

x1 x2

“Tail” of 10% of requests with
response time r > x2.

What’s the
mean r?

Understand how the mean (average) response time can be misleading.

A few requests
have very long
response times.

50%

Cumulative Distribution Function (CDF)

SEDA Lessons

• Means/averages are almost never useful: you have
to look at the distribution.

• Pay attention to quantile response time.

• All servers must manage overload.

• Long response time tails can occur under overload,
and that is bad.

• A staged structure with multiple components
separated by queues can help manage performance.

• The staged structure can also help to manage
concurrency and and simplify locking.

Fischer-Lynch-Patterson (1985)
• No consensus can be guaranteed in an

asynchronous system in the presence of failures.

• Intuition: a “failed” process may just be slow, and
can rise from the dead at exactly the wrong time.

• Consensus may occur recognizably, rarely or often.

Network partition Split brain

C-A-P
choose two

C

A P

consistency

Availabilit
y

Partition-resilience

CA: available, and
consistent, unless
there is a partition.

AP: a reachable replica
provides service even in
a partition, but may be
inconsistent.

CP: always consistent, even
in a partition, but a reachable
replica may deny service if it
is unable to agree with the
others (e.g., quorum).

Coordination in Distributed
Systems
• Master coordinates, dictates consensus

– e.g., lock service
– Also called “primary”

• Remaining consensus problem: who is the
master?

– Master itself might fail or be isolated by a
network partition.

– Requires a high-powered distributed consensus
algorithm (Paxos).

	Slide 1
	Slide 2
	Slide 4
	Slide 5
	Slide 7
	Slide 8
	Slide 9
	Slide 12
	Slide 13
	Slide 14

