
Heap manager review and
intro to shell

COMPSCI210 Recitation

28 Jan 2013

Vamsi Thummala

Heap manager: review

• What's metadata?
– Data about data

– How is it useful in the heap manager?

• Memory alignment
– ALIGN Macro

– New C Standard
• C11: void *aligned_alloc(size_t algn, size_t size);

• Pointer arithmetic and casting
– int *ptr = dmalloc(1)

– int *next = (void *) ptr + 1

• Pointer manipulation
– Infinite loop

• ptr->next = ptr

– segfault issues

• Space utilization (success rate)

• Time complexity

The facts

Java to C: Pointers are evil!

No one shot solution: Lot of design
choices and tradeoffs

Debugging segfaults is hard!

gdb can help

Code walk through is often faster (for
this lab)

Designing the data structure

• How do we know where the chunks are?

• How do we know how big the chunks are?

• How do we know which chunks are free?

• Remember: no queuing of buffer calls to malloc and
free… must deal with them real-time.

• Remember: calls to free only takes a pointer, not a
pointer and a size.

• Solution: Need a data structure to store information
on the “chunks”

• Where do I keep this data structure?

Data structure requirements

● The data structure needs to tell us where the chunks
are, how big they are, and whether they’re free

● We need to be able to CHANGE the data structure during
calls to malloc and free

● We need to be able to find the next free chunk that is
“a good fit for” a given payload

● We need to be able to quickly mark a chunk as
free/allocated

● We need to be able to detect when we’re out of chunks.

– What do we do when we’re out of chunks?

No external space

It would be convenient if it worked like:

 malloc_struct malloc_data_structure;

 …
 ptr = malloc(100, &malloc_data_structure);

 …

 free(ptr, &malloc_data_structure);

 …

Instead all we have is the memory we are giving out.

All of it does not have to be payload! We can use some of that
for our data structure.

The data structure

The data structure IS your memory!
A start:

<h1> <ptr1> <h2> <ptr2> <h3> <ptr3>

What goes in the header?

– That’s your job!

Lets say somebody calls free(ptr2), how can I
coalesce?

– Maybe you need a footer? Maybe not?

Design considerations

● Free blocks: address-ordered or LIFO
● What’s the difference?
● Pros and cons?
● What are the efficiency tradeoffs?
● Heap vs. List

Heap manager: A larger context

0

high

code library

your data

heap

registers

CPU

R0

Rn

PC

“memory”

x

x

your program

common runtime

stack

address space
(virtual or physical)

SP

y

y

The Birth of a Program (C/Ux)

int j;
char* s = “hello\n”;

int p() {
 j = write(1, s, 6);
 return(j);
}

myprogram.c

compiler

 …..
p:
 store this
 store that
 push
 jsr _write
 ret
 etc.

myprogram.s

assembler data

myprogram.o

linker

object
file

data program

(executable file)
myprogram

datadatadata

libraries
and other

objects

A quick reminder

● Heap manager is due today!
● Submission guidelines
● Policy on cheating

Next Lab: A Devil Shell (dsh)

Shell

• Interactive command interpreter

• A high level language (scripting)

• Interface to the OS

• Provides support for key OS ideas
– Isolation

– Concurrency

– Communication

– Synchronization

Demo

Unix programming environment

stdoutstdin

Standard unix programs read a
byte stream from standard input
(fd==0).

They write their output to standard
output (fd==1).

That style makes it
easy to combine
simple programs using
pipes or files.

If the parent sets it up, the
program doesn’t even have
to know.

Stdin or stdout might
be bound to a file,
pipe, device, or
network socket.

Shell Concepts

• Process creation

• Execution

• Input/Output redirection

• Pipelines

• Job control
– Process groups

– Sessions

– Foreground/background jobs

• Given that many processes can be executed
concurrently, which processes should have accesses
to the keyboard/screen (I/O)?

– Signals
• SIGTTOU, SIGTTIN, SIGINT, SIGCONT, SIGSTP

Unix fork/exec/exit/wait syscalls

fork parent fork child

wait exit

int pid = fork();
Create a new process that is a clone of
its parent.

exec*(“program” [, argvp, envp]);
Overlay the calling process with a new
program, and transfer control to it.

exit(status);
Exit with status, destroying the process.
Note: this is not the only way for a
process to exit!

int pid = wait*(&status);
Wait for exit (or other status change) of a
child, and “reap” its exit status. Note:
child may have exited before parent calls
wait!

exec
initialize
child context

Process creation and
execution

 while (1) {
printf(“dsh$ ”);

 command = readcmdline(args);

 switch (pid = fork()) { // new process; concurrency

 case -1:

 perror(“Failed to fork\n”);

 case 0: // child when pid = 0

 exec (command, args, 0); // run command

 default: // parent pid > 0

 waitpid(pid, NULL, 0); // wait until child is done

}

	Slide 1
	Slide 2
	Slide 3
	Implementation Hurdles
	The data structure
	Slide 6
	Slide 7
	Design Considerations
	A Peek Inside a Running Program
	The Birth of a Program (C/Ux)
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Unix programming environment
	Slide 16
	Unix fork/exec/exit/wait syscalls
	shell implementation

