
The devil shell (dsh)

COMPSCI210 Recitation

4th Feb 2013

Vamsi Thummala

Shell

• Interactive command interpreter

• A high level language (scripting)

• Interface to the OS

• Provides support for key OS ideas
– Isolation

– Concurrency

– Communication

– Synchronization

Carnegie Mellon

3

Unix Process Hierarchy

Login shell

ChildChildChild

GrandchildGrandchild

[0]

Daemon
e.g. httpd

init [1]

Shell Concepts

• Process creation

• Execution

• Input/Output redirection

• Pipelines

• Job control
– Process groups

– Foreground/background jobs

• Given that many processes can be executed
concurrently, which processes should have accesses to
the keyboard/screen (I/O)?

– Signals (limited for the lab!)
• SIGCONT, SIGTTOU, SIGTTIN

• Default actions are good enough, no special handling required

dsh: job, process, and cmdline

• Built-in commands
– fg, bg, jobs, cd, ctrl-d (quit/exit)

• Process == command == an executable file
– ls, ps, whoami, wc

• Job == at least one process; possibly
pipeline of processes
– ls | sort | wc

• Cmdline == at least one job; possibly
sequence of jobs
– ls | sort | wc; whoami

Unix fork/exec/exit/wait syscalls

fork parent fork child

wait exit

int pid = fork();
Create a new process that is a clone of
its parent.

exec*(“program” [, argvp, envp]);
Overlay the calling process with a new
program, and transfer control to it.

exit(status);
Exit with status, destroying the process.
Note: this is not the only way for a
process to exit!

int pid = wait*(&status);
Wait for exit (or other status change) of a
child, and “reap” its exit status. Note:
child may have exited before parent calls
wait!

exec
initialize
child context

Process creation and execution

 while (1) {
 printf(“dsh$ ”);

 new_job = readcmdline(args);

 switch (pid = fork()) { // new process; concurrency

 case -1:

 perror(“Failed to fork\n”);

 case 0: // child when pid = 0

 exec (new_job->first_process, args, 0); // run command

 default: // parent pid > 0

 waitpid(pid, NULL, 0); // wait until child is done

}

Fork Example

• What is the output of the program?

• # of L0, L1, L2, Bye?

void fork_l3()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("L2\n");
 fork();
 printf("Bye\n");
}

Fork Example

• What is the output of the program?

• # of L0, L1, L2, Bye?

void fork_l3()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("L2\n");
 fork();
 printf("Bye\n");
} L1 L2

L2

Bye

Bye

Bye

Bye

L1 L2

L2

Bye

Bye

Bye

Bye

L0

Fork with Exec: Example

• What is the output of the program?

• # of L0, L1, L2, Bye?

void fork_exec()
{
 printf("L0\n");
 fork();
 char *args[] = { "/bin/echo", NULL };
 if(execve("/bin/echo", args) < 0) {
 perror("execve");
 exit(EXIT_FAILURE);
 }
 printf("L1\n");
 fork();
 printf("L2\n");
 fork();
 printf("Bye\n");
}

Fork with Exec: Example

• What is the output of the program?

• # of L0, L1, L2, Bye?

void fork_exec()
{
 printf("L0\n");
 fork();
 char *args[] = { "/bin/echo", NULL };
 if(execve("/bin/echo", args) < 0) {
 perror("execve");
 exit(EXIT_FAILURE);
 }
 printf("L1\n");
 fork();
 printf("L2\n");
 fork();
 printf("Bye\n");
}

L1 L2

L2

Bye

Bye

Bye

Bye

L1 L2

L2

Bye

Bye

Bye

Bye

L0

Process groups

• A process group is a collection of (related) processes.
Each group has a process group ID.

• Process groups are useful for signal handling

• There is at most one foreground process group which
controls the tty

• Each group has a group leader who pid = pgid

– To get the group ID of a process:

pid_t getpgrp(void)

– A process may join an existing group, create a new
group.

 int setpgid(pid_t, pid, pid_t, pgid)

– A signal can be sent to the whole group of
processes.

Shell and child: bg, fg, jobs

dshtty

stdout
stderr

stdin dsh

tty

stdout
stderr

stdin

tty

stdout
stderr

stdinfork
tcsetpgrp

exec
wait

If child is to run in the foreground:
Child takes control of the terminal (tty) input (tcsetpgrp).
The foreground process receives all tty input until it stops or exits.
At most one process can control the tty input (others may write to tty).

Child process inherits
standard I/O bindings to
the terminal (tty).

1

2

3

void spawn_job(job_t *j, bool fg) {

 pid_t pid;
 process_t *p;

 for(p = j->first_process; p; p=p->next) { // Loop through the process
 switch (pid = fork()) {

 case -1: /* fork failure */
 perror(“fork”); exit(1);

 case 0: /* child */
 /* establish a new process group
 * Q: what if setpgid fails?
 */
 if (j->pgid < 0)

j->pgid = getpid();

 if (setpgid(0,j->pgid) == 0 && fg) // If success and fg is set
tcsetpgrp(STDIN_FILENO, j->pgid); // assign the terminal

 /* Exec code here */
 default: /* parent */

 /* establish child process group here too. */
 if (j->pgid < 0)

 j->pgid = pid;
 setpgid(pid, j->pgid);

 }
 waitpid(WAIT_ANY, &status, WNOHANG | WUNTRACED) /* wait_() for jobs to complete */
 tcsetpgrp(STDIN_FILENO, getpid()); /* grab control of the terminal */
 }
}

Job states and transitions

fg

bgstop

exit

exit

tty in
tty out

SIGCONT

SIGCONT
set-fg ctrl-z

(SIGSTP)

STOP

 EXITfork + set-fg

Kernel (tty driver) sends signal to process P if P attempts
to read from tty and p is in background, and (optionally) if
P attempts to write to tty. Default action of these signals
is STOP.

User can send a
STOP signal to a
foreground
process/job by
typing ctrl-z on
tty.

Continue a stopped
process by sending
it a SIGCONT
signal with
“kill*” syscall.

fg

Resuming a job

/* Sends SIGCONT signal to wake up the blocked job */
void continue_job(job_t *j)
{
 if(kill(-(j->pgid), SIGCONT) < 0)
 perror("kill(SIGCONT)");
}

Another oddity of Unix: kill + negative sign
Interpretation: SIGCONT signal to a process group

Input/Output (I/O)

• I/O through file descriptors
– File descriptor may be for a file, terminal, …

• Example calls

– read(fd, buf, sizeof(buf));

– write(fd, buf, sizeof(buf));

– write(STDOUT_FILENO, buf, sizeof(buf)); // writing to stdout

• Avoid printf()

• Convention:
– 0: input

– 1: output

– 2: error

• Child inherits open file descriptors from parents

– Files, pipes, and sockets are external to process and can be
shared

I/O redirection (< >)

• Example: “ls > tmpFile”

• Modify dsh to insert before exec:

close(1); // release fd 1

fd = creat(“tmpFile”, 0644); // fd will be 1

 // or

fd = open(“tmpFile”, O_WRONLY | O_CREAT | O_APPEND,

(S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH)) // 0644

• No modifications to “ls”!

• “ls” could be writing to file, terminal, etc., but
programmer of “ls” doesn’t need to know

Pipeline: Chaining processes

• One-way communication channel

• Symbol: |

int fdarray[2]; char buffer[100];

pipe(fdarray);

write(fdarray[1], “hello world”, 11);

read(fdarray[0], buffer, sizeof(buffer));

printf(“Received string: %s\n”, buffer);

Pipe between parent/child

int fdarray[2];

char buffer[100];

pipe(fdarray);

 switch (pid = fork()) {

 case -1: perror(“fork failed”); exit(1);

 case 0: write(fdarray[1], "hello world", 5);

 default: n = read(fdarray[0], buffer, sizeof(buffer));

 //block until data is available

 }

How does the pipes work in shell, i.e, “ls | wc”?

Need to duplicate the child descriptors to stdin/stdout

dup2(oldfd, newfd); // duplicates fd; closes and copies at one shot

Pipes are core to Unix
programming environment

stdoutstdin

Standard unix programs
read a byte stream from
standard input (fd==0).

They write their output to
standard output (fd==1).

That style makes it easy to
combine simple programs
using pipes or files.

If the parent sets it
up, the program doesn’t
even have to know.

Stdin or stdout might
be bound to a file,
pipe, device, or
network socket.

dsh additional requirements

• Auto compilation and execution of C
programs

• Error handling and Logging

• Batch mode

	Slide 1
	Slide 2
	Unix Process Hierarchy
	Slide 4
	Slide 5
	Unix fork/exec/exit/wait syscalls
	shell implementation
	Input/Output (I/O)
	Slide 9
	Slide 10
	Slide 11
	Process groups
	Shell and child
	Slide 14
	Job states and transitions
	Slide 16
	Slide 17
	I/O redirection
	Slide 19
	Slide 20
	Unix programming environment
	Slide 22

