
The devil shell (dsh) –
Continued

COMPSCI210 Recitation

11th Feb 2013

Vamsi Thummala

Shell and child: bg, fg, jobs

dshtty

stdout
stderr

stdin dsh

tty

stdout
stderr

stdin

tty

stdout
stderr

stdinfork
tcsetpgrp

exec
wait

If child is to run in the foreground:
Child takes control of the terminal (tty) input (tcsetpgrp).
The foreground process receives all tty input until it stops or exits.
At most one process can control the tty input (others may write to tty).

Child process inherits
standard I/O bindings to
the terminal (tty).

1

2

3

Job states and transitions

fg

bgstop

exit

exit

tty in
tty out

SIGCONT

SIGCONT
set-fg ctrl-z

(SIGSTP)

STOP

 EXITfork + set-fg

Kernel (tty driver) sends signal to process P if P attempts
to read from tty and p is in background, and (optionally) if
P attempts to write to tty. Default action of these signals
is STOP.

User can send a
STOP signal to a
foreground
process/job by
typing ctrl-z on
tty.

Continue a stopped
process by sending
it a SIGCONT
signal with
“kill*” syscall.

fg

Process states

• R: Running or runnable
(on run queue)

• D: Uninterruptible sleep
(waiting for some event)

• S: Interruptible sleep
(waiting for some event
or signal)

• T: Stopped, either by a
job control signal or
because it is being
traced by a debugger

• Z: Zombie process,
terminated but not yet
reaped by its parent

● s This process is a session
leader.

● + This process is part of a
foreground process group.

Process States: Unix shell

• ps j or ps -l or ps -jl
vamsi@COMPSCI210$ ps j | cat | sort -n
 PPID PID PGID SID TTY TPGID STAT UID TIME COMMAND
 2021 2146 2146 2146 pts/0 24837 Ss 1000 0:01 bash
 2146 24808 24808 2146 pts/0 24808 R+ 1000 0:00 ps j
 2146 24809 24808 2146 pts/0 24808 S+ 1000 0:00 cat
 2146 24810 24808 2146 pts/0 24808 S+ 1000 0:00 sort -n

vamsi@COMPSCI210$ jobs
[1]+ Stopped vim
[2] Running sleep 50 &

vamsi@COMPSCI210$ ps -l | cat | sort -k3 -n
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
0 R 1000 25023 2146 0 80 0 - 1177 - pts/0 00:00:00 ps
0 S 1000 2146 2021 0 80 0 - 2180 wait pts/0 00:00:01 bash
0 S 1000 25021 2146 0 80 0 - 1051 hrtime pts/0 00:00:00 sleep
0 S 1000 25024 2146 0 80 0 - 1057 pipe_w pts/0 00:00:00 cat
0 S 1000 25025 2146 0 80 0 - 2154 pipe_w pts/0 00:00:00 sort
0 T 1000 25012 2146 0 80 0 - 3163 signal pts/0 00:00:00 vim

Pipeline: Chaining processes

• One-way communication channel

• Symbol: |

int fdarray[2]; char buffer[100];

pipe(fdarray);

write(fdarray[1], “hello world”, 11);

read(fdarray[0], buffer, sizeof(buffer));

printf(“Received string: %s\n”, buffer);

Pipe between parent/child

int fdarray[2];

char buffer[100];

pipe(fdarray);

 switch (pid = fork()) {

 case -1: perror(“fork failed”); exit(1);

 case 0: write(fdarray[1], "hello world", 5);

 default: n = read(fdarray[0], buffer, sizeof(buffer));

 //block until data is available

 }

How does the pipes work in shell, i.e, “ls | wc”?

Need to duplicate the child descriptors to stdin/stdout

dup2(oldfd, newfd); // duplicates fd; closes and copies at one shot

Pipes are core to Unix
programming environment

stdoutstdin

Standard unix programs
read a byte stream from
standard input (fd==0).

They write their output to
standard output (fd==1).

That style makes it easy to
combine simple programs
using pipes or files.

If the parent sets it
up, the program doesn’t
even have to know.

Stdin or stdout might
be bound to a file,
pipe, device, or
network socket.

Pipeline implementation

[pid=502]
[pgid=502]

[pid=501]
[pid=503]
[pgid=502]

dsh
[pid=501]

exec_()
e.g., ls

[pid=501]

exec_()
e.g., wc

fork

fork

wait_()

stdin

stdin

stdout

pipe
dup2

Poll children
for process
completion

Chaining:
dup2(fd[0], STDIN_FILENO)

dsh additional requirements

• Auto compilation and execution of C programs
– How to execute two processes sequentially?

• Error handling and logging
– dup2(stderr, ...)

• Batch mode
– $./dsh < batchFile

– Batch mode is used for partial grading
– It is important that you should test in batch mode
before submission

IPC: Beyond pipes

• Named pipes

dsh$ mkfifo namedPipe

dsh$ cat < namedPipe > out &

dsh$ jobs

[1]+ Running cat < namedPipe > out &

dsh$ echo "Communicating to other process via name pipe" >
namedPipe

dsh$ cat out

Communicating to other process via name pipe

• Sockets
– Named bidirectional pipe

– To the kernel, an endpoint of communication

– Can be used to communicate across a network

– Underlying basis for all Internet applications

Client Server communication

Client
process

Server
process

1. Client sends request

3. Server sends response 2. Server
handles
request

4. Client
handles
response

Resource

• Create a socket with
the socket() system
call

• Connect the socket to
the address of the
server using the
connect() system call

• Send and receive data
using the read() and
write() system calls

• Create a socket with the socket() system call

• Bind the socket to an address using the
bind() system call. For a server socket on
the Internet, an address consists of a port
number on the host machine.

• Listen for connections with the listen()
system call

• Accept a connection with the accept() system
call. This call typically blocks until a
client connects with the server.

• Send and receive data

Client Server communication:
A detailed example

Connection socket pair
(128.2.194.242:51213, 208.216.181.15:80)

Server
(port 80)

Client

Client socket address
128.2.194.242:51213

Client host address
128.2.194.242

Server host address
208.216.181.15

51213 is an ephemeral port
allocated by the kernel

80 is a well-known port
associated with Web servers

Server socket address
208.216.181.15:80

 [CMU 15-213]

[Demo]

Socket interface

Client/
Server
Session

Client
Server

socket socket

bind

listen

rio_readlineb

rio_writenrio_readlineb

rio_writen

Connection
request

rio_readlineb

close

close
EOF

Await connection
request from
next client

open_listenfd

open_clientfd

acceptconnect

[CMU 15-213]

java.net

• Low level API
– Addresses

– Sockets

– Interfaces

• High level API
– URIs

– URLs

– Connections

Concept checkers for midterm

• Basic: address space, process, thread, event

• Kernel: syscall, context switch, and
exceptions (trap, fault, interrupt)

• Protection: reference monitor, access control
list, capability

• Execution: process vs. thread

• Concurrency: event-driven vs. threading

• Fragmentation: internal vs. external

• IPC: pipes vs. sockets

Fall 2012 midterm paper

• With solutions
– http://www.cs.duke.edu/courses/compsci
210/fall12/midterm-210-12f-sol.pdf

	Slide 1
	Shell and child
	Job states and transitions
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Unix programming environment
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

