
Concurrency &
Synchronization

COMPSCI210 Recitation

25th Feb 2013

Vamsi Thummala

Slides adapted from Landon Cox

Midterm Review

http://www.cs.duke.edu/~chase/cps11
0-archive/midterm-210-13s1.pdf

• Please follow carefully the
instructions listed on the exam

http://www.cs.duke.edu/~chase/cps110-archive/midterm-210-13s1.pdf
http://www.cs.duke.edu/~chase/cps110-archive/midterm-210-13s1.pdf

Midterm Solutions

http://www.cs.duke.edu/~chase/cps11
0-archive/midterm-210-13s1-sol.pdf

http://www.cs.duke.edu/~chase/cps110-archive/midterm-210-13s1-sol.pdf
http://www.cs.duke.edu/~chase/cps110-archive/midterm-210-13s1-sol.pdf

On Shell lab

Expected for write-up phase:

1. Read the handout. Read the material from OSTEP [1] on
process creation and execution. Bryant and O'Hallaron can be a
handy reference [2]

2. Read the man pages for fork(), exec (), wait (), dup2(),
open(), read(), write(), and exit()

3. Write small programs to experiment with these system calls

4. Read the man pages for tcsetpgrp() and setpgid()

5. Read the code we provided for tcsetpgrp() and setpgid() and
combine it with earlier programs you have written

6. Using the parser we gave, start writing single commands

Next lab: Elevator

• Start early!

• It is a group lab, but:
– Recommend highly to start practicing
synchronization problems individually

– Coding practices may also differ among
individuals but we follow common set
of guidelines to write readable code

• Please follow lab guidelines
– Only one submission from a group

Goal: Next few weeks

• Master synchronization techniques

• Develop best practices for writing
synchronization code

• Write solid concurrent code

So far: Multi-process
concurrency

• Pipes: ls | wc

Process 1: ls Process 2: wc

IPC
data data

Now: Concurrency using threads

• Light weight

• Fast to create

• Shared address space
– Each process can have multiple threads

• Each thread has its own:
– SP
– PC
– Registers

• Everything else is shared
– Heap
– Code library
– Common runtime

data

Two threads sharing a CPU

reality

concept

context switch

An Example: Shared account

• Two threads accessing account
concurrently
– Landon tries to withdraw money
– Melissa tries to deposit money

• Initial balance = 100

Thread Landon:
 balance = balance – 110;
 printf(“%d\n”, balance)

Thread Melissa:
 balance = balance * 2;
 printf(“%d\n”, balance);

What is the final balance?

Debugging non-determinism

• Requires worst-case reasoning
– Eliminate all ways for program to break

• Debugging is hard
– Cannot test all possible interleavings

– Bugs can only happen sometimes

• Heisenberg
– Re-running the program may make the bug
disappear

– Doesn't mean that it still ain't there!

Constraining concurrency

• Synchronization
– Control thread interleavings

• Some events are independent
– No shared state
– Relative (scheduling) order of these
does not matter

• Other events are dependent
– Order (of scheduling) can effect
program output

Goals of synchronization

• All interleavings must give correct
result: deterministic concurrent
program!
– Works no matter how scheduling is done
– How fast threads run

• Constrain as little as possible
– Constraining slows program down
– Creates complexity

Work through example:
“Too much milk”

• Rules
– Quantity
• The fridge must always be stocked with milk
• Milk expires quickly, so never > 1 milk

– Order
• Landon and Melissa can come home at any time
• If either see empty fridge, must buy milk

– Code (no synchronization)

if (noMilk){
 buy milk;
}

“Too much milk” principals

Time

3:00 Look in fridge (no
milk)

3:05 Go to grocery store
3:10 Look in fridge (no

milk)

3:15 Buy milk

3:20 Go to grocery store

3:25 Arrive home, stock
fridge

3:30 Buy milk

3:35 Arrive home, stock
fridge

Too much milk!

What broke?

• Code worked sometimes, but not
always
– Code contained a race condition
– Processor speed caused a incorrect
result

• First type of synchronization
– Mutual exclusion inside critical
sections

Synchronization concepts

• Mutual exclusion
– Ensure only one thread doing something
at a time
• E.g., one person shops at a time

– Code blocks are atomic w.r.t each
other
• Threads cannot run atomic code blocks at
the same time

Synchronization concepts

• Critical section
– Code in critical section must run atomically w.r.t
other critical section code

• If A and B are critical w.r.t each other:
– A and B must mutually exclude each other

• Conflicting Code is often the same block
– But executed by different threads

– Reads/writes same data (e.g., fridge, screen)

Back to “Too much milk”

• What is a critical section?

• Landon and Melissa's critical section
must be atomic w.r.t each other

if (noMilk){
 buy milk;
}

Attempt 1

• Atomic operations
– Load: check note

– Store: leave note

if (noMilk) {
 if (noNote){
 leave note;
 buy milk;
 remove note;
 }
}

Does this work?

if (noMilk) {
 if (noNote){
 leave note;
 buy milk;
 remove note;
 }
}

if (noMilk) {
 if (noNote){
 leave note;
 buy milk;
 remove note;
 }
}

2
3 4

1

Does this work?

if (noMilk) {
 if (noNote){
 leave note;
 buy milk;
 remove note;
 }
}

if (noMilk) {
 if (noNote){
 leave note;
 buy milk;
 remove note;
 }
}

2
3 4

1

Is this better than no synchronization at
all?

What broke?

• Melissa's events can happen
– After Landon checks for a note

– Before Landon leaves a note

if (noMilk) {
 if (noNote){
 leave note;
 buy milk;
 remove note;
 }
}

Attempt 2

• Idea
– Change the order of “leave note” and
“check note”

– Requires labeled notes (else you will
see your note)

Does this work?

leave noteLandon
if (no noteMelissa){
 if (noMilk){
 buy milk;
 }
}
remove noteLandon

leave noteMelissa
if (no noteLandon){
 if (noMilk){
 buy milk;
 }
}
remove noteMelissa

Does this work?

leave noteLandon
if (no noteMelissa){
 if (noMilk){
 buy milk;
 }
}
remove noteLandon

leave noteMelissa
if (no noteLandon){
 if (noMilk){
 buy milk;
 }
}
remove noteMelissa

Nope! Illustration of “starvation”.

What about now?

while(noMilk) {
 leave noteLandon
 if (no noteMelissa){
 if (noMilk){
 buy milk;
 }
 }
}
remove noteLandon

while(noMilk) {
 leave noteMelissa
 if (no noteLandon){
 if (noMilk){
 buy milk;
 }
 }
}
remove noteMelissa

What about now?

while(noMilk) {
 leave noteLandon
 if (no noteMelissa){
 if (noMilk){
 buy milk;
 }
 }
}
remove noteLandon

while(noMilk) {
 leave noteMelissa
 if (no noteLandon){
 if (noMilk){
 buy milk;
 }
 }
}
remove noteMelissa

Nope! Same “starvation” problem as before.

Attempt 3

• We are getting closer

• Problem: Who should buy milk if
both leave notes?

• Idea: Let Landon hang around to
make sure job is done

Does this work?

leave noteLandon
while (noteMelissa){
 do nothing
}
if (noMilk){
 buy milk;
}
remove noteLandon

leave noteMelissa
if (no noteLandon){
 if (noMilk){
 buy milk;
 }
}
remove noteMelissa

Does this work?

leave noteLandon
while (noteMelissa){
 do nothing
}
if (noMilk){
 buy milk;
}
remove noteLandon

leave noteMelissa
if (no noteLandon){
 if (noMilk){
 buy milk;
 }
}
remove noteMelissa

Yes, it does work! Can you show it?

Downside of the solution

• Complexity
– Hard to convince yourself it works

• Asymmetry
– Landon and Melissa runs different code
– What about when number of threads > 2?

• Landon consumes CPU while waiting
– Busy-waiting

– However, only need atomic load/store

Raising the level of
abstraction

• OS can provide better abstractions

• Locks
– Also known as mutexes

– Provides mutual exclusion
– Prevents from entering critical section

• Lock operations
– Lock aka Lock.acquire()

– Unlock aka Lock.release()

Lock operations

• Lock: wait until lock is free, then
acquire it

do {
 if (lock is free) {
 acquire lock
 break
 }
} while (1)

Must be
atomic with
respect to
other threads
calling this
code

This is busy wait implementation. We will
fix later!

“Too much milk”, Attempt 2

• Why doesn't the note work as lock?

if (noMilk) {
 if (noNote){
 leave note;
 buy milk;
 remove note;
 }
}

Block is not atomic. Must
atomically
 - check if lock is free
 - grab it

Elements of locking

• The lock is initially free

• Threads acquire a lock before an action

• Threads release a lock when an action
completes

• Operation lock() must wait when someone
else has acquired the lock

• Key Idea:
– All synchronization involves waiting!

“Too much milk”, Attempt 4
with locks

lock ()
if (noMilk) {
 buy milk
}
unlock ()

lock ()
if (noMilk) {
 buy milk
}
unlock ()

“Too much milk”, Attempt 4
with locks

lock ()
if (noMilk) {
 buy milk
}
unlock ()

lock ()
if (noMilk) {
 buy milk
}
unlock ()

Problem: Waiting for a lock while the other
buys milk

“Too much milk”, Attempt 5
without waiting

lock ()
if (noNote && noMilk){
 leave note “at store”
 unlock ()
 buy milk
 lock ()
 remove note
 unlock ()
} else {
 unlock ()
}

lock ()
if (noNote && noMilk){
 leave note “at store”
 unlock ()
 buy milk
 lock ()
 remove note
 unlock ()
} else {
 unlock ()
}

“Too much milk”, Attempt 5
without waiting

lock ()
if (noNote && noMilk){
 leave note “at store”
 unlock ()
 buy milk
 lock ()
 remove note
 unlock ()
} else {
 unlock ()
}

lock ()
if (noNote && noMilk){
 leave note “at store”
 unlock ()
 buy milk
 lock ()
 remove note
 unlock ()
} else {
 unlock ()
}

Not holding
lock

Only hold lock while handling shared resource.

“Too much milk”, Attempt 6

lock ()
if (noMilk && noNote){
 leave note “at store”
 unlock ()
 buy milk
 stock fridge
 remove note
} else {
 unlock ()
}

lock ()
if (noMilk && noNote){
 leave note “at store”
 unlock ()
 buy milk
 stock fridge
 remove note
} else {
 unlock ()
}

2

4

Does this work?

“Too much milk”, Java version

synchronized (obj){
 if (noMilk) {
 buy milk
 }
}

synchronized (obj){
 if (noMilk) {
 buy milk
 }
}

Every object is a lock
Using synchronized keyword:

Lock = {
 Unlock = }

Modified “Too much milk”

• Landon and Melissa take turns to
buy the milk

• Similar to a Ping-Pong problem

• How to satisfy the required
constraint?
– Strict alternative ordering

New synchronization concept:
Monitors

• Mutual exclusion is necessary but not
sufficient

• Still need ordering constraints
– Often must wait for something to happen
– And wake up

• Monitors
– wait() on a conditional variable
– signal() aka notify()
– broadcast() aka notifyall()

Detour: Concurrency in Java

• http://docs.oracle.com/javase/tutor
ial/essential/concurrency/index.htm
l

• Two ways:
– Implement a Runnable interface

– Subclass Thread

public class HelloRunnable impelments Runnable {
 public void run() {}
}

public class HelloThread extends Thread {
 public void run() {}
}

http://docs.oracle.com/javase/tutorial/essential/concurrency/index.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/index.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/index.html

Java Runnable Interface

// Custom thread class
public class MyThread
 Implements Runnable{
 public MyThread(..){
 …
 }
 // Override thread run method
 public void run() {

// run the thread
 …
 }
}

// Client class
public class Client {
 public void action(..) {
 // Create thread
 Thread t1 = new Thread(new
 myThread(..));
 // Start thread
 t1.start();
 Thread t2 = new Thread(new
 myThread(..));
 t2.start();
 }
}

java.lang.Runnable

• java.lang.Thread java.lang.Runnable→
• run()

• start()

• interrupt()

• isAlive()

• join()

• sleep()

• yield()

• isInterrupted()

• currentThread()

Other abstractions support by
 a language/OS

• Software transaction memory
– Transaction support within shared
memory

– Analogous to db transaction support
– Active area of research

• Actors aka asynchronous
communication via message passing
– Erlang

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 24
	Slide 25
	Slide 26
	Slide 30
	Slide 31
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 40
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

