
Synchronization II:
EventBarrier, Monitor, and

a Semaphore

COMPSCI210 Recitation

4th Mar 2013

Vamsi Thummala

Check point: Mission in
progress

• Master synchronization techniques

• Develop best practices for writing
synchronization code

• Write solid concurrent code

So far: “Too much milk”
example

• Need for mutual exclusion
(mutex/lock)
– Ensures only one thread thread access
critical section

“Too much milk”: Need for Mutex

lock ()
if (noNote && noMilk){
 leave note “at store”
 unlock ()
 buy milk
 lock ()
 remove note
 unlock ()
} else {
 unlock ()
}

lock ()
if (noNote && noMilk){
 leave note “at store”
 unlock ()
 buy milk
 lock ()
 remove note
 unlock ()
} else {
 unlock ()
}

Not holding
lock

Only hold lock while handling shared resource.

“Too much milk” first
extension

• Constraint:
– Landon and Melisa take strict turns to
buy the milk

– Similar to Ping-Pong example

• Mutexes are not sufficient to
impose constraints

Raise the level of
abstraction

1. Mutual exclusion
– Ensure one thread access the critical
section

– Use locks

2. Ordering constraints
– Describe “before-after” relationships

– One thread waits for another
– Use monitors: a lock + a conditional
variable

Other abstractions support by
 a language/OS

• Software transaction memory
– Transaction support within shared memory

– Analogous to db transaction support
– Active area of research

– “volatile” in Java
• But please do not use for the labs. We want you
to learn and handle synchronization explicitly

• Actors aka asynchronous communication
via message passing
– Erlang

Monitor: A Lock + CV

• Conditional variable: Maintains
state
– Queue of waiting threads on a lock

• Internal atomic actions

// begin atomic
release lock
put thread on wait queue
go to sleep
// end atomic

Condition variable operations

wait (lock){ //Also, wait() in Java
 release lock
 put thread on wait queue
 go to sleep
 // after wake up
 acquire lock
}

signal (){ //notify() in Java
 wakeup one waiter (if any)
}

Broadcast (){ //notifyAll() in Java
 wakeup all waiters (if any)
}

Atomic

Atomic

Atomic

Lock
always

held

Lock
usually

held

Lock
usually

held

Lock
always

held

“Too much milk”: strict
alternate constraint

synchronized buyMilk {
 if(isMilkPurchased) {
 notify()
 wait()
 buy milk
 }

synchronized buyMilk {
 if(isMilkPurchased) {
 notify()
 wait()
 buy milk
 }

What if they are multiple threads in two pools?

“Too much milk”: second extension –
multiple threads in two pools

synchronized buyMilk {
 while(hasMilkPurchased) {
 notify(MelisaPool)
 wait(MelisaPool)
 buy milk
 }

synchronized buyMilk {
 while(hasMilkPurchased) {
 notify(LandonPool)
 wait(LandonPool)
 buy milk
 }

and his
friends

and her
friends

Some coding practices

• (Almost) never sleep()

• (Always) loop always before you leap!

• Avoid using synchronized(this)
– Lock is held and released in between a method
– Code hard to read/follow
– Instead divide the code into modules and
synchronize on methods

while(CV is true) {
 wait()
}

Semaphore

• Alternative to monitor

• Two operations
– P() // Down

– V() // UP

• No separation of locking and coordination/scheduling
unlike monitors
– Everything expressed using P(), V() including mutex
(binary semaphore)

– Best fit when synchronization involves some form of
counting (resources)

– CV can represent any condition: need not be counting

• CV and semaphore type can implement one another

“Too much milk”: first extension
taking turns using semaphores

boolean isMilkPurchased = false
buyMilk {
 isMilkPurchased.V()
 isMilkPurchased.P()
}

boolean isMilkPurchased = false
buyMilk {
 isMilkPurchased.P()
 isMilkPurchased.V()
}

 Asymmetric code

“Too much milk”: first extension
taking turns using semaphores

boolean isMilkPurchased = true
buyMilk {
 isMilkPurchased.P()
 isMilkPurchased.V()
}

boolean isMilkPurchased = false
buyMilk {
 isMilkPurchased.P()
 isMilkPurchased.V()
}

 Symmetric code

What is the right
synchronization primitive?

• Should I use a CV or a Semaphore or
a EventBarrier?

• Some problems are better expressed
using semaphores, but in general,
CVs are much better abstraction

• EventBarrier is useful when
multiple threads has to synchronize
in phases
– Will revisit

Semaphores using CVs

class Semaphore {
 private unsigned int _count;

 public Semaphore(unsigned int count) { _count = count; }

 public synchronized void P() {

 }

 public synchronized void V() {

 }
}

Semaphores using CVs

class Semaphore {
 private unsigned int _count;

 public Semaphore(unsigned int count) { _count = count; }

 public synchronized void P() { //Down
 while (_count <= 0)
 try { wait(); } catch (Exception e) {}
 _count--;
 }

 public synchronized void V() { //Up
 _count++;
 notify();
 }
}

Read/Write Lock

• Improve standard lock for multiple
readers:

• Read
– Can assign locks to multiple readers,
but only when:
• no threads are requesting for write access

• Write
– Exclusive access:
• no other threads are reading or writing

Implementing Read/Write Lock

public class ReadWriteLock{

 private int _numReaders, _numWriters, _numWriteRequests = 0;

 public synchronized void acquireRead() {
 }
 public synchronized void releaseRead() {
 }
 public synchronized void acquireWrite() {
 }
 public synchronized void releaseWrite() {
 }
}

Implementing Read/Write Lock

public class ReadWriteLock{
 private int _numReaders, _numWriters, _numWriteRequests = 0;
 public synchronized void acquireRead() {
 while(_numWriters > 0 || _numWriteRequests > 0){
 wait();
 }
 readers++;
 }
 public synchronized void releaseRead() {
 }
 public synchronized void acquireWrite() {
 }
 public synchronized void releaseWrite() {
 }
}

Implementing Read/Write Lock

public class ReadWriteLock{
 private int _numReaders, _numWriters, _numWriteRequests = 0;
 public synchronized void acquireRead() {
 while(_numWriters > 0 || _numWriteRequests > 0){
 wait();
 }
 _numReaders++;
 }
 public synchronized void releaseRead() {
 _numReaders--;
 notifyAll();
 }
 public synchronized void acquireWrite() {
 }
 public synchronized void releaseWrite() {
 _numWriters--;
 notifyAll();
 }
}

Implementing Read/Write Lock
public class ReadWriteLock{
 private int _numReaders, _numWriters, _numWriteRequests = 0;
 public synchronized void acquireRead() {
 while(_numWriters > 0 || _numWriteRequests > 0){ wait();}
 _numReaders++;
 }
 public synchronized void releaseRead() {
 _numReaders--; notifyAll();
 }
 public synchronized void acquireWrite() {
 _numWriteRequests++;
 while(_numReaders > 0 || _numWriters > 0){
 wait();
 }
 _numWriteRequests--;
 _numWriters++;
 }
 public synchronized void releaseWrite() {
 _numWriters--; notifyAll();
 }
}

Read/Write Lock issues

• Starvation

• Lock not reentrant
– A thread holding a lock and requesting
for the same lock again will block since
the lock is held

• Deadlock can occur
– Due to lock not reentrant (1R, 2W, 1R)

• How to improve for the above?

EventBarrier: Another analogy
 (on piazza)

• Alice, Bob, and Charlie are three secret agents who are good in
their respective domains: Math, Physics, and CS. They are given a
jigsaw puzzle to solve, which demands the knowledge from all the
three domains. However, due to the nature of operation involved
there are certain constraints: they cannot talk to each other
directly, and they cannot meet for more than 10 minutes at a time.
There is an agent coordinator, who arranges rendezvous, whenever
all the agents agrees to meet. They worked out a plan: all agents
work independently on a certain task and notifies the coordinator
when they are done with that task and want to meet (through
arrive() call), and wait perpetually until the coordinator responds
with details (through raise() call). Once all three agents notifies
the coordinator, the coordinator send the details of rendezvous,
and they all meet and synchronize on the tasks, and dissemble. With
the collective new found knowledge, they start working
independently again the next day, and this process continues until
the puzzle is solved.

EventBarrier: Use case

• A complex computation can be divided and distributed
among multiple tasks. Some parts of this computation
can be I/O bound, the other parts are CPU intensive,
and other are GPU operations that rely on specialized
graphics chip. These partial results must be collected
from various tasks for the final calculation. The
result determines what other partial computations each
task is to perform next.

Testing EventBarrier

• Say you have n consumers with some local variable set
to "phase1". On complete(), each consumer increments
their count. For example, the second iteration their
local variable will be set to "phase2". But the
barrier does not return until all the consumers
arrived. So if you have print() statement after the
barrier, you should see all the consumers printing
"phase2". If some consumer prints "phase1" that means
that complete() did not happen but still passed
through the barrier. Hence, indicative of a bug.

“Too much milk”: thrid
extension

• Practice problem

• More:
http://www.cs.duke.edu/courses/compsci210/spring13/sli
des/recitation/sync-practice.pdf

synchronized buyMilk {

}

synchronized buyMilk {

 }

4 times in a week 3 times in a week

	Slide 1
	Slide 2
	Slide 3
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 12
	Slide 13
	Slide 16
	Slide 17
	Slide 19
	Slide 20
	Slide 24
	Slide 25
	Slide 26
	Slide 27

