
Elevator synchronization
and scheduling

COMPSCI210 Recitation

18th Mar 2013

Vamsi Thummala

Check point: Mission in
progress

• Master synchronization techniques

• Develop best practices for writing
synchronization code

• Write solid concurrent code

EventBarrier: Use case

• A complex computation can be divided and distributed
among multiple tasks. Some parts of this computation
can be I/O bound, the other parts are CPU intensive,
and other are GPU operations that rely on specialized
graphics chip. These partial results must be collected
from various tasks for the final calculation. The
result determines what other partial computations each
task is to perform next.

EventBarrier: Another analogy
 (on piazza)

• Alice, Bob, and Charlie are three secret agents who are good in
their respective domains: Math, Physics, and CS. They are given a
jigsaw puzzle to solve, which demands the knowledge from all the
three domains. However, due to the nature of operation involved
there are certain constraints: they cannot talk to each other
directly, and they cannot meet for more than 10 minutes at a time.
There is an agent coordinator, who arranges rendezvous, whenever
all the agents agrees to meet. They worked out a plan: all agents
work independently on a certain task and notifies the coordinator
when they are done with that task and want to meet (through
arrive() call), and wait perpetually until the coordinator responds
with details (through raise() call). Once all three agents notifies
the coordinator, the coordinator send the details of rendezvous,
and they all meet and synchronize on the tasks, and dissemble. With
the collective new found knowledge, they start working
independently again the next day, and this process continues until
the puzzle is solved.

Testing EventBarrier

• Say you have n consumers with some local variable set
to "phase1". On complete(), each consumer increments
their count. For example, the second iteration their
local variable will be set to "phase2". But the
barrier does not return until all the consumers
arrived. So if you have print() statement after the
barrier, you should see all the consumers printing
"phase2". If some consumer prints "phase1" that means
that complete() did not happen but still passed
through the barrier. Hence, indicative of a bug.

Using EventBarrier for
Elevator

• Where to place the EventBarrier?

• How many are needed per building
with F floors?

• How many are needed per building
with F floors and E elevators?

Elevator data structure(s)

• ElevatorController
– Pool/Queue of events

• CallUp/CallDown
– Can return an elevator

• Elevator
– Pool/Queue of requests

• Direction

• Destination floor

What metrics do you consider
for elevator scheduling?

http://www.elevatorworld.com/blogs/?p=1214

http://www.elevatorworld.com/blogs/?p=1214

Metrics for elevator scheduling

• Service time

– Time between pushing the button and exit the elevator

– Approximate

• Wait time

• Fairness

– Variation in the service time(s)

• Efficiency

– Roughly defined as the amount of total work done
(Energy)

– Work done: Number of floors the elevators pass in
total

• Objective: Minimize service time, Maximize fairness,
Minimize work done

First Come First Served
(FCFS)

• Service in the order in which the
requests are made
– Riders enter and press the destination
floor

• Simple to implement

• No starvation
– Every request is serviced

• Is FCFS a good policy?

FCFS

• The elevator is currently servicing the 10th floor
• Order of requests from riders at the 10th floor:
 5 (down), 35 (up), 2 (down), 14 (up), 12 (up), 21 (up),
 3 (down), 9 (down), 22 (up), 20 (up)
• To simplify, let us assume everyone gets in

• Total service time (assuming 1 unit time per floor serviced):
5 + 30 + 33 + 12 + 2 + 9 + 18 + 6 + 12 + 2 = 129, Avg: 12.9
● Can we do better?

● Service the closest floor

5352141221392220

tail

30331229186122

head 10

5

Shortest Seek Time First
(SSTF)

9121420212235532

tail

3

2611133021

● Go to the closest floor in the work queue
● Reduces total seek time compared to FCFS
● Order of requests from riders at the 10th floor:
 5 (down), 35 (up), 2 (down), 14 (up), 12 (up), 21 (up),
 3 (down), 9 (down), 22 (up), 20 (up)

● Total service time (assuming 1 unit time per floor serviced):
1 + 3 + 2 + 6 + 1 + 1+ 13 + 30 + 2 + 1 = 60, Avg: 6

● Disadvantages:
● Starvation possible
● Switching directions may slow down the actual service time

● Can we do better? Reorder the requests w.r.t direction

head 10
1

SCAN

9532121420212235

tail

42110261113

• Start servicing in a given direction to the end
• Change direction and start servicing again

• Order of requests from riders at the 10th floor:
 5 (down), 35 (up), 2 (down), 14 (up), 12 (up), 21 (up),
 3 (down), 9 (down), 22 (up), 20 (up)

● Total service time (assuming 1 unit time per floor serviced):
1 + 4 + 2 + 1 + 10 + 2 + 6 + 1 + 1 + 13 = 41, Avg: 4.1

● Advantages
● Reduces variance in seek time

● Can we do better?

head 10

1

Circular SCAN (C-SCAN)

9532121420212235

tail

421261113

• Start servicing in a given direction to the end
• Go to the first floor without servicing any requests;
• Restart servicing

• Order of requests from riders at the 10th floor:
 5 (down), 35 (up), 2 (down), 14 (up), 12 (up), 21 (up),
 3 (down), 9 (down), 22 (up), 20 (up)

● Total service time (assuming 1 unit time per floor serviced):
1 + 4 + 2 + 1 + 1 + 11 + 2 + 6 + 1 + 1 + 13 = 43, Avg: 4.3

● Advantages
● More fair compared to SCAN

● Is this what you expect in a real-world elevator?

head 10

1
1

 1

11

Elevator Scheduling

9532121420212235

tail

421261113

• At least one difference from C-SCAN
• Direction of pick up

• Order of requests from riders at the 10th floor:
 5 (down), 35 (up), 2 (down), 14 (up), 12 (up), 21 (up),
 3 (down), 9 (down), 22 (up), 20 (up)

● Total service time (assuming 1 unit time per floor serviced):
1 + 4 + 2 + 1 + 1 + 9 + 2 + 2 + 6 + 1 + 1 + 13 = 43, Av: 4.3

● Can you do better?
● We look forward to your lab submissions

head 10

1

1

 1head 10

2

tail

9

Disk Scheduling

• Similar to elevator scheduling

• Each disk has a queue of jobs waiting to access
disk

– read jobs

– write jobs

• Each entry in queue contains the following

– pointer to memory location to read/write
from/to

– sector number to access

– pointer to next job in the queue

• OS usually maintains this queue

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

