Predicate Logic

Today's Menu

Predicate Logic

- Quantifiers: Universal and Existential
- Nesting of Quantifiers
- Applications

Limitations of Propositional Logic

Suppose we have:

"All human beings are mortal."

"Sachin is a human being."

Does it follow that "Sachin is mortal?"

Cannot be represented using propositional logic.

Need a language that talks about objects, their properties, and their relations.

Predicate Logic

Predicate logic uses the following new features:

- Variables: x, y, z which can be replaced by elements from their domain.
- Predicates: P(x, y), M(x) are propositions with variables
- Quantifiers: for all, there exists

```
Example: P(x, y): x = y + 3. P(4, 1) is TRUE. \neg P(4, 1) is FALSE.
```

P(2, 1) is FALSE. $\neg P(2, 1)$ is TRUE.

Note: We talk about the truth value of a propositional function P(x, y) when we assign values to x and y from their domains, e.g. setting x = 4 and y = 1 to obtain P(4, 1) which is now a proposition.

Quantifiers

Domain of Discourse, U:

The domain of a variable in a propositional function.

Universal Quantification:

P(x) is the proposition: "P(x) is true for all values of x in U."

Universal Quantifier, "For all," symbol: ∀

Written as: $\forall x P(x)$ which asserts P(x) is true for all x in U.

Existential Quantification:

P(x) is the proposition: "There exists an element x in U such that P(x) is true."

Existential Quantifier, "There exists," symbol: 3

Written as: $\exists x P(x)$ which asserts P(x) is true for some x in U.

The truth value depends on the choice of U and P(x).

Universal Quantifier ∀ (similar to ∧)

 $\forall x P(x)$ is read as "For all x, P(x)" or "For every x, P(x)"

 $\forall x P(x)$ Same as $P(x_1) \land P(x_2) \ldots \land P(x_n) \land \ldots$ for all x_i in U

Examples:

- If P(x) denotes "x is an undergraduate student" and U is {Enorlled Students in COMPSCI 230}, then ∀x P(x) is TRUE.
- 2. If P(x) denotes "x > 0" and U is the integers, then $\forall x P(x)$ is FALSE.
- 3. If P(x) denotes "x > 0" and U is the positive integers, then $\forall x P(x)$ is TRUE.
- 4. If P(x) denotes "x is even" and U is the integers, then $\forall x$ P(x) is FALSE.
- 5. If P(x) denotes "x is mortal" and U represents all human beings, then $\forall x P(x)$ is TRUE.

Existential Quantifier ∃ (similar to ∨)

 $\exists x \ P(x)$ is read as "there exists x, P(x)" or "For some x, P(x) or "there exists at least one x such that P(x)"

 $\exists x \ P(x) \ Same \ as \ P(x_1) \lor P(x_2) \ldots \lor P(x_n) \lor \ldots \ for \ all \ x_i \ in \ U$

Examples:

- If P(x) denotes "x is a Duke student" and U is the set of all Enorlled Students in COMPSCI 230, then ∃x P(x) is TRUE.
- 2. If P(x) denotes "x = x + 1" and U is the integers, then $\exists x P(x)$ is FALSE.
- 3. If P(x) denotes "x = x * 2" and U is the integers, then $\exists x P(x)$ is TRUE.
- 4. If P(x) denotes "x is a friend of Mickey mouse" and U is the cartoon characters, then $\exists x \ P(x)$ is TRUE. Namely, Minnie mouse!
- 5. If P(x) denotes "x is the oldest person in this room" and U is everyone present in the classroom now, then ∃x P(x) is TRUE. Namely, your instructor!

Uniqueness Quantifier ∃!

How to express the following using quantifiers?

- "There is a unique x such that P(x)."
- "There is one and only one x such that P(x)."

Examples:

- 1. If P(x) denotes "x + 1 = 0" and U is the integers, then $\exists !x P(x)$ is TRUE.
- 2. But if P(x) denotes "x > 0," then $\exists !x P(x)$ is FALSE.

The uniqueness quantifier is **not really needed** as the restriction that there is a unique x such that P(x) can be expressed as:

$$\exists x (P(x) \land \forall y (P(y) \rightarrow y = x))$$

Thinking about Quantifiers

- When the domain of discourse U is finite, we can think
 of quantification as looping through the elements of the
 domain.
- To evaluate $\forall x P(x)$ loop through all x in the domain.
 - If at every step P(x) is TRUE, then $\forall x P(x)$ is TRUE.
 - If at a step P(x) is FALSE, then $\forall x P(x)$ is FALSE and the loop terminates.
- To evaluate $\exists x P(x)$ loop through all x in the domain.
 - If at some step, P(x) is TRUE, then $\exists x P(x)$ is TRUE and the loop terminates.
 - If the loop ends without finding an x for which P(x) is TRUE, then $\exists x P(x)$ is FALSE.
- Even if the domains are infinite, we can still think of the quantifiers this fashion, but the loops will not terminate in some cases.

Precedence of Quantifiers

Operator	Precedence
ΕΥ	1
¬	2
^ V	3 4
\rightarrow \leftrightarrow	5 6

The quantifiers \forall and \exists have higher precedence than all the logical operators.

Old Example Revisited

Our Old Example:

Suppose we have:

```
"All human beings are mortal."
"Sachin is a human being."
```

Does it follow that "Sachin is mortal?"

Solution:

- Let H(x): "x is a human being."
- Let M(x): "x is mortal."
- The domain of discourse U is all human beings.
- "All human beings are mortal." translates to ∀x (H(x) → M(x))
 "Sachin is a human being." translates to H(Sachin)
- Therefore, for H(Sachin) → M(Sachin) to be true it must be the case that M(Sachin). Later we will show this formally.

Equivalences in Predicate Logic

- Statements involving predicates and quantifiers are logically equivalent if and only if they have the same truth value
 - for every predicate substituted into these statements and
 - for every domain of discourse used for the variables in the expressions.
- The notation $S \equiv T$ indicates that S and T are logically equivalent.
- Example: $\forall x \neg \neg S(x) \equiv \forall x S(x)$

Negating Quantified Expressions

TABLE 2 De Morgan's Laws for Quantifiers.			
Negation	Equivalent Statement	When Is Negation True?	When False?
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every x , $P(x)$ is false.	There is an x for which $P(x)$ is true.
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false.	P(x) is true for every x .

Take home message:
$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$
 $\neg \exists x P(x) \equiv \forall x \neg P(x)$

Example: "There is an honest politician."

Let H(x): "x is honest." U consists of all politicians. Then, $\exists x H(x)$.

"There does not exist an honest politician." $\neg \exists x \ H(x)$.

 $\neg \exists x \ H(x)$ is equivalent to $\forall x \ \neg H(x)$.

However, this statement has a different meaning:

"Not all politicians are honest." How do you express this?

The Lewis Carroll Example

- Premises:
 - 1. "All lions are fierce."
 - 2. "Some lions do not drink coffee."

Conclusion: Can we conclude the following?

- 3. "Some fierce creatures do not drink coffee."
- Let L(x): "x is a lion." F(x): "x is fierce." and C(x): "x drinks coffee."
 Then the above three propositions can be written as:
 - 1. $\forall x (L(x) \rightarrow F(x))$
 - 2. $\exists x (L(x) \land \neg C(x))$
 - 3. $\exists x (F(x) \land \neg C(x))$
- Later we'll show how to conclude 3 from 1 and 2.

Validity and Satisfiability

- An assertion involving predicates and quantifiers is valid if it is true
 - for all domains
 - for every propositional function substituted for the predicates in the assertion.

Example: $\forall x \neg S(x) \leftrightarrow \neg \exists x S(x)$

- An assertion involving predicates is satisfiable if it is true
 - for some domains
 - some propositional functions that can be substituted for the predicates in the assertion.

Otherwise it is unsatisfiable.

Example: $\forall x(F(x) \leftrightarrow T(x))$ not valid but satisfiable

Example: $\forall x(F(x) \land \neg F(x))$ unsatisfiable

 The scope of a quantifier is the part of an assertion in which variables are bound by the quantifier.

Nested Quantifiers

Example:

$$\forall x \,\exists y \,(x+y=0)$$

$$\forall x \forall y (xy = yx)$$

$$\exists x \forall y (xy = x (y + 1))$$

∃x∃y (x has name Mickey and y has name Minnie)

U when TRUE L

 \mathbb{Z}

 \mathbb{Z}

 \mathbb{Z}

Disney World

U when FALSE

N

alphabet

 \mathbb{Z}^{+}

COMPSCI 230

Example: Let U be the real numbers, Define P(x,y) : x/y = 1

What is the truth value of the following:

1. $\forall x \forall y P(x,y)$

Answer: FALSE

2. $\forall x \exists y P(x,y)$

Answer: TRUE

3. $\exists x \forall y P(x,y)$

Answer: FALSE

4. $\exists x \exists y P(x,y)$

Answer: TRUE

Quantifications of Two Variables

Statement	When True?	When False
$\forall x \forall y P(x, y)$ $\forall y \forall x P(x, y)$	P(x,y) is true for every pair x,y .	There is a pair x , y for which $P(x,y)$ is false.
$\forall x \exists y P(x,y)$	For every x there is a y for which $P(x,y)$ is true.	There is an x such that $P(x,y)$ is false for every y .
$\exists x \forall y P(x,y)$	There is an x for which $P(x,y)$ is true for every y .	For every x there is a y for which P(x,y) is false.
$\exists x \exists y P(x, y)$ $\exists y \exists x P(x, y)$	There is a pair x , y for which $P(x,y)$ is true.	P(x,y) is false for every pair x,y

More Examples

```
Example 1: "Brothers are siblings."
        Solution: \forall x \ \forall y \ (B(x,y) \rightarrow S(x,y))
Example 2: "Siblinghood is symmetric."
        Solution: \forall x \ \forall y \ (S(x,y) \rightarrow S(y,x))
Example 3: "Everybody loves somebody."
        Solution: \forall x \exists y L(x,y)
Example 4: "There is someone who is loved by everyone."
        Solution: \exists y \ \forall x \ L(x,y)
Example 5: "There is someone who loves someone."
        Solution: \exists x \exists y L(x,y)
Example 6: "Everyone loves himself"
```

Thursday, January 17, 2013 Chittu Tripathy Lecture 04

Solution: $\forall x L(x,x)$