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Today’s Menu 

• Quantifiers: Universal and Existential 

• Nesting of Quantifiers 

• Applications 

Predicate Logic 
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Limitations of Propositional Logic 

• Suppose we have:  

“All human beings are mortal.” 

“Sachin is a human being.” 

• Does it follow that “Sachin is mortal?” 

Cannot  be represented using propositional logic.  
 

Need a language that talks about objects, their 
properties, and their relations.  



Lecture 04 Thursday, January 17, 2013 Chittu Tripathy 

Predicate Logic 

Predicate logic uses the following new features: 
– Variables:       x, y, z which can be replaced by elements from 

their domain. 

– Predicates:    P(x, y), M(x) are propositions with variables 

– Quantifiers:   for all, there exists 

 Example: P(x, y):    x  = y + 3. 

P(4, 1) is TRUE.          ¬P(4, 1) is FALSE. 
 
P(2, 1) is FALSE.         ¬P(2, 1) is TRUE. 

Note: We talk about the truth value of a propositional function 
P(x, y) when we assign values to x and y from their domains, 
e.g. setting x = 4 and y = 1 to obtain P(4, 1) which is  now a 
proposition.  
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Quantifiers 

Domain of Discourse, U:  
              The domain of a variable in a propositional function. 

Universal Quantification:  
              P(x) is the proposition:“P(x) is true for all values of x in U.” 

Universal Quantifier, “For all,”   symbol:  

Written as: x P(x) which asserts P(x) is true for all x in U. 

Existential Quantification: 
              P(x) is the proposition: “There exists an element x in U 

such that P(x) is true.” 

Existential Quantifier, “There exists,”   symbol:  
Written as:  x P(x) which asserts P(x) is true for some x in U. 

The truth value depends on the choice of U and P(x). 
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Universal Quantifier  (similar to ∧)  

x P(x)  is read as “For all x, P(x)” or “For every x, P(x)” 

x P(x) Same as P(x1)  P(x2) . . .  P(xn)  . . .   for all xi in U 

Examples: 
1.  If P(x) denotes “x is an undergraduate student” and U is 

{Enorlled Students in COMPSCI 230}, then x P(x) is TRUE. 

2. If P(x) denotes  “x > 0” and U is the integers, then x P(x) 
is FALSE. 

3. If P(x) denotes  “x > 0” and U  is the positive integers, then  
x P(x) is TRUE. 

4. If P(x) denotes  “x is even” and U  is the integers,  then x 
P(x) is FALSE. 

5. If P(x) denotes  “x is mortal” and U represents all human 
beings,  then x P(x) is TRUE. 
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Existential Quantifier  (similar to )  

Examples: 
1.  If P(x) denotes “x is a Duke student” and U is the set of all 

Enorlled Students in COMPSCI 230, then x P(x) is TRUE. 
2. If P(x) denotes  “x = x + 1” and U is the integers, then x P(x) is 

FALSE. 
3. If P(x) denotes  “x = x * 2” and U  is the integers, then x P(x) is 

TRUE. 
4. If P(x) denotes  “x is a friend of Mickey mouse” and U  is the 

cartoon characters,  then x P(x) is TRUE. Namely, Minnie 
mouse! 

5. If P(x) denotes  “x is the oldest person in this room” and U is 
everyone present in the classroom now,  then x P(x) is TRUE. 
Namely, your instructor! 

 

x P(x)  is read as “there exists x, P(x)” or “For some x, 
P(x) or “there exists at least one x such that P(x)” 

x P(x) Same as P(x1)  P(x2) . . .  P(xn)  . . .   for all xi in U 
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How to express the following using quantifiers? 

• “There is a unique x such that P(x).”  

• “There is one and only one x such that P(x).” 

Uniqueness Quantifier ! 

Examples: 
1. If P(x) denotes  “x + 1 = 0”  and U is the integers, 

then !x P(x) is TRUE.  
2. But if P(x) denotes  “x > 0,”  then !x P(x) is FALSE. 

 

The uniqueness quantifier is not really needed as the 
restriction that there is a unique x such that P(x) can be 
expressed as:   
                               x (P(x) ∧y (P(y) → y =x)) 
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Thinking about Quantifiers 

• When the  domain of discourse U is finite, we can think 
of quantification as looping through the elements of the 
domain. 

• To evaluate x P(x) loop through all x in the domain.  
– If at every step P(x) is TRUE, then x P(x) is TRUE.  
– If at a step P(x) is FALSE, then x P(x) is FALSE and the loop 

terminates.  

• To evaluate x P(x) loop through all x in the domain.  
– If  at some step, P(x) is TRUE, then x P(x) is TRUE and the 

loop terminates.  
– If the loop ends without finding an x for which P(x) is TRUE, 

then x P(x) is FALSE. 

• Even if the domains are infinite, we can still think of the 
quantifiers this fashion, but the loops will not terminate 
in some cases. 
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Precedence of Quantifiers 

Operator Precedence 

1 

 2 

    
  

3 
4 

  
  

5 
6 

  

The quantifiers  and   have higher 
precedence than all the logical operators. 
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Old Example Revisited 

• Suppose we have:  

“All human beings are mortal.” 

“Sachin is a human being.” 

• Does it follow that “Sachin is mortal?” 

Our Old Example: 

Solution: 

• Let H(x): “x is a human being.” 

• Let M(x): “x is mortal.” 

• The domain of discourse U is all human beings. 

• “All human beings are mortal.” translates to x (H(x)  M(x)) 

 “Sachin is a human being.” translates to H(Sachin) 

• Therefore, for H(Sachin)  M(Sachin) to be true it must be 
the case that M(Sachin). Later we will show this formally. 
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Equivalences in Predicate Logic 

• Statements involving predicates and quantifiers are 
logically equivalent if and only if they have the same 
truth value  

– for every predicate substituted into these 
statements and  

– for every domain of discourse used for the 
variables in the expressions.  

• The notation S ≡T  indicates that S and T  are 
logically equivalent.  

• Example:  x ¬¬S(x) ≡ x S(x) 
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Negating Quantified Expressions 

Take home message: 

Example: “There is an honest politician.” 

Let H(x): “x is honest.” U consists of all politicians. Then, x H(x).    
 “There does not exist an honest politician.” ¬x H(x).  

          ¬x H(x) is equivalent to x ¬H(x).  
 However, this statement has a different meaning: 

        “Not all politicians are honest.” How do you express this? 
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The Lewis Carroll Example 

• Premises: 

1. “All lions are fierce.” 

2. “Some lions do not drink coffee.” 

Conclusion: Can we conclude the following? 

3. “Some fierce creatures do not drink coffee.”  

• Let L(x): “x is a lion.” F(x): “x is fierce.” and C(x): “x drinks coffee.” 
Then the above three propositions can be written as: 

1. x (L(x)→ F(x)) 

2. x (L(x) ∧ ¬C(x)) 

3. x (F(x) ∧ ¬C(x)) 

• Later we’ll show how to conclude 3 from 1 and 2. 
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Validity and Satisfiability 
• An assertion involving predicates and quantifiers is valid if 

it is true  
• for all domains  
• for every propositional function  substituted for the predicates in 

the assertion. 

Example:   

• An assertion involving predicates is satisfiable if it is true  
• for some domains  
• some propositional functions that can be substituted for  the 

predicates in the assertion.  

    Otherwise it is unsatisfiable. 
    Example:                                     not valid but satisfiable  
    Example:                                        unsatisfiable 
• The scope of a quantifier is the part of an assertion in 

which variables are bound by the quantifier. 
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Nested Quantifiers 

x y (x + y = 0) 
xy (xy = yx) 
xy (xy = x (y + 1)) 
xy (x has name Mickey 

and y has name Minnie) 

U when TRUE U when FALSE 

Z N 
Z alphabet 

Z Z+ 

Disney World COMPSCI 230 

Example: 

  Example: Let U be the real numbers,   Define P(x,y) : x/y = 1 

   What is the truth value of the following: 

1. xyP(x,y)             Answer: FALSE 

2. xyP(x,y)              Answer: TRUE 

3. xy P(x,y)             Answer: FALSE 

4. x  y P(x,y)            Answer: TRUE 
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Quantifications of Two Variables 

Statement When True? When False 

 
 
 

P(x,y) is true for every pair x,y. There is a pair x, y for which 
P(x,y) is false. 

 
 

For every x there is a y for 
which P(x,y) is true. 

There is an x such that P(x,y) is 
false for every y. 

 
 

There is an x for which P(x,y) is 
true for every y. 

For every x there is a y for 
which P(x,y) is false. 

 
 
 

There is a pair x, y for which 
P(x,y) is true. 

P(x,y) is false for every pair x,y 
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More Examples 

Example 1: “Brothers are siblings.” 
            Solution: x y (B(x,y) → S(x,y)) 
Example 2: “Siblinghood is symmetric.” 
            Solution: x y (S(x,y) → S(y,x)) 
Example 3: “Everybody loves somebody.” 
            Solution: x y L(x,y) 
Example 4: “There is someone who is loved by everyone.” 
            Solution: y x L(x,y) 
Example 5: “There is someone who loves someone.” 
            Solution: x y L(x,y) 
Example 6: “Everyone loves himself” 
            Solution: x L(x,x) 


