Due Date: January 31, 2013

Problem 1: In each of the following cases, rank the functions by order of their growth. Here $\log n$ means $\log _{2} n$.

- $2^{\log n},(\log n)^{\log n}, e^{n}, 4^{\sqrt{\log n}}, n!, \sqrt{\log n}$
- $\left(\frac{3}{2}\right)^{n}, n^{3},(\log n)^{2}, \log (n!), 2^{2^{n}}, n^{\frac{1}{\log n}}, n^{\frac{1}{\log \log n}}$.

Problem 2: Show that, if c is a positive real number, then $g(n)=1+c+c^{2}+c^{3}+\cdots+c^{n}$ is:

- $\Theta(1)$ if $c<1$
- $\Theta(n)$ if $c=1$
- $\Theta\left(c^{n}\right)$ if $c>1$

Problem 3: Solve the following recurrences by expanding the terms or using induction and give a Θ bound for each of them. If you use induction, you can use the master theorem to guess the bound. In all the cases, assume $T(k)=O(1)$ if k is a constant.

- $T(n)=5 T(n / 4)+n$
- $T(n)=T(\sqrt{n})+1$
- $T(n)=T(n-1)+n^{c}$

Problem 4: Give an efficient algorithm to compute the least common multiple of two n-bit numbers x and y, that is, the smallest number divisible by both x and y. What is the running time of your algorithm as a function of n ?

Problem 5: The k th quantiles of an n-element set are the $k-1$ order statistics that divide the sorted set into k equal-sized sets (to within 1). That is, compute the elements of rank $\lceil i n / k\rceil$ for all $1 \leq i<k$. Give an $O(n \log k)$-time algorithm to list the k th quantiles of a set.

