Due Date: January 31, 2013

Problem 1: In each of the following cases, rank the functions by order of their growth. Here $\log n$ means $\log_2 n$.

- $2^{\log n}$, $(\log n)^{\log n}$, e^n , $4^{\sqrt{\log n}}$, n!, $\sqrt{\log n}$
- $(\frac{3}{2})^n$, n^3 , $(\log n)^2$, $\log(n!)$, 2^{2^n} , $n^{\frac{1}{\log n}}$, $n^{\frac{1}{\log \log n}}$.

Problem 2: Show that, if c is a positive real number, then $g(n) = 1 + c + c^2 + c^3 + \cdots + c^n$ is:

- $\Theta(1)$ if c < 1
- $\Theta(n)$ if c=1
- $\Theta(c^n)$ if c > 1

Problem 3: Solve the following recurrences by expanding the terms or using induction and give a Θ bound for each of them. If you use induction, you can use the master theorem to guess the bound. In all the cases, assume T(k) = O(1) if k is a constant.

- T(n) = 5T(n/4) + n
- $T(n) = T(\sqrt{n}) + 1$
- $T(n) = T(n-1) + n^c$

Problem 4: Give an efficient algorithm to compute the *least common multiple* of two n-bit numbers x and y, that is, the smallest number divisible by both x and y. What is the running time of your algorithm as a function of n?

Problem 5: The kth quantiles of an n-element set are the k-1 order statistics that divide the sorted set into k equal-sized sets (to within 1). That is, compute the elements of rank $\lceil in/k \rceil$ for all $1 \le i < k$. Give an $O(n \log k)$ -time algorithm to list the kth quantiles of a set.

January 18, 2013 Page 1