Due Date: January 31, 2013

Problem 1: In each of the following cases, rank the functions by order of their growth. Here $\log n$ means $\log _{2} n$.

- $2^{\log n},(\log n)^{\log n}, e^{n}, 4^{\sqrt{\log n}}, n!, \sqrt{\log n}$
- $\left(\frac{3}{2}\right)^{n}, n^{3},(\log n)^{2}, \log (n!), 2^{2^{n}}, n^{\frac{1}{\log n}}, n^{\frac{1}{\log \log n}}$

Problem 2: Solve the following recurrences using induction and give a Θ bound for each of them and explain why.

- $T(n)=2 T(n / 2+5)+n$
- $T(n)=2 T(n / 2)+\frac{n}{\log n}$
- $T(n)=\sqrt{n} T(\sqrt{n})+n$

Problem 3: Give an efficient algorithm to compute the least common multiple of two n-bit numbers x and y, that is, the smallest number divisible by both x and y. What is the running time of your algorithm as a function of n ?

Problem 4: [Monge Arrays] An $m \times n$ array A of real numbers is a Monge array if for all i, j, k, and ℓ such that $1 \leq i<k \leq m$ and $1 \leq j<\ell \leq n$, we have

$$
A[i, j]+A[k, \ell] \leq A[i, \ell]+A[k, j] .
$$

In other words, whenever we pick two rows and two columns of a Monge array and consider the four elements at the intersections of the rows and the columns, the sum of the upper-left and lower-right elements is less than or equal to the sum of the lower-left and upper-right elements.
(i) Here is a description of a divide-and-conquer algorithm that computes the leftmost minimum element in each row of an $m \times n$ Monge array A :

Construct a submatrix A^{\prime} of A consisting of the even-numbered rows of A. Recursively determine the leftmost minimum for each row of A^{\prime}. Then compute the leftmost minimum in the odd-numbered rows of A.

Explain how to compute the leftmost minimum in the odd-numbered rows of A (given that the leftmost minimum of the even-numbered rows is known) in $O(m+n)$ time.
(ii) Write the recurrence describing the running time of the algorithm described above. Show that its solution is $O(m+n \log m)$.

Problem 5: Suppose we are given an array $A[1 . . n]$ with the special property that $A[1] \geq A[2]$ and $A[n-1] \leq A[n]$. We say that an element $A[x]$ is a local minimum if it is less than or equal to both its neighbors, or more formally, if $A[x-1] \geq A[x]$ and $A[x] \leq A[x+1]$. For example, there are six local minima in the following array:

9	7	7	2	1	3	7	5	4	7	3	3	4	8	6	9

We can obviously find a local minimum in $O(n)$ time by scanning through the array. Describe and analyze an algorithm that finds a local minimum in $O(\log n)$ time. [Hint: With the given boudary conditions, the array must have at least one local minimum. Why?]

