
ASSIGNMENT 1 COURSE: COMPSCI 590-4

Due Date: January 31, 2013

Problem 1: In each of the following cases, rank the functions by order of their growth. Here log n

means log2 n.

• 2logn, (log n)logn, en, 4
√
logn, n!,

√
log n

• (32)n, n3, (log n)2, log(n!), 22
n
, n

1
logn , n

1
log logn

Problem 2: Solve the following recurrences using induction and give a Θ bound for each of them
and explain why.

• T (n) = 2T (n/2 + 5) + n

• T (n) = 2T (n/2) + n
logn

• T (n) =
√
nT (
√
n) + n

Problem 3: Give an efficient algorithm to compute the least common multiple of two n-bit num-
bers x and y, that is, the smallest number divisible by both x and y. What is the running time of
your algorithm as a function of n?

Problem 4: [Monge Arrays] An m×n array A of real numbers is a Monge array if for all i, j, k,
and ` such that 1 ≤ i < k ≤ m and 1 ≤ j < ` ≤ n, we have

A[i, j] + A[k, `] ≤ A[i, `] + A[k, j].

In other words, whenever we pick two rows and two columns of a Monge array and consider the four
elements at the intersections of the rows and the columns, the sum of the upper-left and lower-right
elements is less than or equal to the sum of the lower-left and upper-right elements.

(i) Here is a description of a divide-and-conquer algorithm that computes the leftmost minimum
element in each row of an m× n Monge array A:

Construct a submatrix A′ of A consisting of the even-numbered rows of A. Re-
cursively determine the leftmost minimum for each row of A′. Then compute the
leftmost minimum in the odd-numbered rows of A.

Explain how to compute the leftmost minimum in the odd-numbered rows of A (given that
the leftmost minimum of the even-numbered rows is known) in O(m + n) time.

(ii) Write the recurrence describing the running time of the algorithm described above. Show that
its solution is O(m + n logm).

January 18, 2013 Page 1



ASSIGNMENT 1 COURSE: COMPSCI 590-4

Problem 5: Suppose we are given an array A[1..n] with the special property that A[1] ≥ A[2] and
A[n− 1] ≤ A[n]. We say that an element A[x] is a local minimum if it is less than or equal to both
its neighbors, or more formally, if A[x − 1] ≥ A[x] and A[x] ≤ A[x + 1]. For example, there are
six local minima in the following array:

9 7 7 2 1 3 7 5 4 7 3 3 4 8 6 9

We can obviously find a local minimum in O(n) time by scanning through the array. Describe and
analyze an algorithm that finds a local minimum in O(log n) time. [Hint: With the given boudary
conditions, the array must have at least one local minimum. Why?]

January 18, 2013 Page 2


