
ASSIGNMENT 3 COURSE: COMPSCI 330

Due Date: March 5, 2013

Problem 1: We wish to perform the following two operations on a set X of real numbers:

• INSERT(x): first delete from X all numbers not larger than x and then insert x into X .

• FIND-MIN: return the smallest element of X

Describe a data structure that supports each of these operations in O(1) amortized time. (Hint:
Consider using a stack)

Problem 2: Given a binary search tree, add to each node v an extra attribute v.size indicating
the number of keys stored in the subtree rooted at v. Let `(v), r(v) denote the left and right child
of v, respectively, and let α be a constant such that 1/2 ≤ α < 1. A node v is α-balanced if
`(v).size ≤ α · v.size and r(v).size ≤ α · v.size. The binary search tree is α-balanced if every
node in the tree is α-balanced.

In the following, assume that the constant α satisfies 1/2 < α < 1. Suppose that INSERT is
implemented as usual for an n-node binary search tree, except that after every insertion, if any node
in the tree is no longer α-balanced, then we “rebuild” the subtree rooted at the highest such node in
the tree so that it becomes 1/2-balanced. (Note: in this way, at most one “rebuild” is performed at
each insertion or deletion.)

We use the potential method to analyze the above rebuilding scheme. For a node v in a binary
search tree T , define ∆(v) = |`(v).size− r(v).size|, and define the potential of T as

Φ(T) = c
∑

v∈T :∆(v)≥2

∆(v),

where c is a sufficiently large constant that depends on α.

(1) Argue that any binary search tree has nonnegative potential and a 1/2-balanced tree has potential
0.

(2) Suppose that m units of potential can pay for rebuilding an m-node subtree. How large must
c be in terms of α in order for it to take O(1) amortized time to rebuild a subtree that is not
α-balanced?

(3) Show that inserting an item into an n-node α-balanced tree costs O(log n) amortized time.

(Hint: Refer to [Er:15] for a different analysis of this algorithm.)

Problem 3: Any skip list L can be transformed into a binary search tree T (L) as follows. The
root of T (L) is the leftmost node on the highest non-empty level of L; the left and right subtrees are
constructed recursively from the nodes to the left and to the right of the root. Let’s call the resulting
tree T (L) a skip list tree.

February 19, 2013 Page 1

ASSIGNMENT 3 COURSE: COMPSCI 330

(1) Show that any search in T (L) is no more expensive than the corresponding search in L.

(2) Describe an algorithm to insert a new search key into the skip list tree in O(log n) expected
time. Inserting key x into T (L) should produce exactly the same tree as inserting x into L and
then transforming L into a tree. (Hint: You will need to maintain some additional information
in the tree nodes.)

Problem 4: Given a set of variables {x1, x2, . . . , xn}, an equality constraint is of the form “xi =

xj” and an disequality constraint is of the form “xi 6= xj”. Describe an efficient algorithm that takes
as input m constraints (some equality and some disequality) over n variables and decides whether
all the constraints can be satisfied. For instance, the constraints

x1 = x2, x2 = x3, x3 = x4, x1 6= x4

cannot be satisfied.

Problem 5: Let {x1, x2, . . . , xn} be a set of real numbers on the real line, describe an efficient
algorithm that decides the smallest set of unit-length closed intervals such that each xi is in at least
one of those intervals. Show the correctness of your algorithm (that is, the set of intervals output by
your algorithm is indeed smallest possible) and analyze the running time.

February 19, 2013 Page 2

