
ASSIGNMENT 3 COURSE: COMPSCI 590

Due Date: March 5, 2013

Problem 1: We wish to perform the following two operations on a set X of real numbers:

• INSERT(x): first delete from X all numbers not larger than x and then insert x into X .

• FIND-MIN: return the smallest element of X

Describe a data structure that supports each of these operations in O(1) amortized time. (Hint:
Consider using a stack.)

Problem 2: Given a binary search tree, add to each node v an extra attribute v.size indicating
the number of keys stored in the subtree rooted at v. Let `(v), r(v) denote the left and right child
of v, respectively, and let α be a constant such that 1/2 ≤ α < 1. A node v is α-balanced if
`(v).size ≤ α · v.size and r(v).size ≤ α · v.size. The binary search tree is α-balanced if every
node in the tree is α-balanced.

In the following, assume that the constant α satisfies 1/2 < α < 1. Suppose that INSERT is
implemented as usual for an n-node binary search tree, except that after every insertion, if any node
in the tree is no longer α-balanced, then we “rebuild” the subtree rooted at the highest such node in
the tree so that it becomes 1/2-balanced. (Note: in this way, at most one “rebuild” is performed at
each insertion or deletion)

We use the potential method to analyze the above rebuilding scheme. For a node v in a binary
search tree T , define ∆(v) = |`(v).size− r(v).size|, and define the potential of T as

Φ(T) = c
∑

v∈T :∆(v)≥2

∆(v),

where c is a sufficiently large constant that depends on α.

(1) Argue that any binary search tree has nonnegative potential and a 1/2-balanced tree has potential
0.

(2) Suppose that m units of potential can pay for rebuilding an m-node subtree. How large must
c be in terms of α in order for it to take O(1) amortized time to rebuild a subtree that is not
α-balanced?

(3) Show that inserting an item into an n-node α-balanced tree costs O(log n) amortized time.

(Hint: Refer to [Er:15] for a different analysis of this algorithm.)

Problem 3: Any skip list L can be transformed into a binary search tree T (L) as follows. The
root of T (L) is the leftmost node on the highest non-empty level of L; the left and right subtrees are
constructed recursively from the nodes to the left and to the right of the root. Let’s call the resulting
tree T (L) a skip list tree.

February 19, 2013 Page 1

ASSIGNMENT 3 COURSE: COMPSCI 590

(1) Show that any search in T (L) is no more expensive than the corresponding search in L.

(2) Describe an algorithm to insert a new search key into the skip list tree in O(log n) expected
time. Inserting key x into T (L) should produce exactly the same tree as inserting x into L and
then transforming L into a tree. (Hint: You will need to maintain some additional information
in the tree nodes.)

Problem 4: In past lectures, we have seen disjoint-set data structures for maintaining a collection
of disjoint sets which support the following two operations:

• UNION(x, y): merges the sets that contain x and y into a new set that is the union of these
two sets.

• FIND-SET(x): returns a pointer to the representitive of the (unique) set containing x.

Now suppose it is known that all union operations will be performed before all find-set operations.
Describe an implementation of a disjoint-set data structure such that each of the UNION and FIND-
SET operations takes O(1) amortized time.

Problem 5: Let X be a set of n intervals on the real line. We say that a set P of points stabs X
if every interval in X contains at least one point in P . Describe and analyze an efficient algorithm
to compute the smallest set of points that stabs X . Assume that your input consists of two arrays
XL[1..n] and XR[1..n], representing the left and right endpoints of the intervals in X .

February 19, 2013 Page 2

