Due Date: April 9, 2013

Problem 1: A subsequence is obtained by extracting a subset of elements from a sequence, but keeping them in the same order; the elements of the subsequence need not be contiguous in the original sequence.

Call a sequence $X[1 . . k]$ of numbers oscillating if $X[i]<X[i+1]$ for all even i, and $X[i]>$ $X[i+1]$ for all odd i. Describe an efficient algorithm to compute the length of the longest oscillating subsequence of an arbitrary array A of n integers.

Problem 2: Suppose we have a text consisting of a sequence of words, $W=w_{1} w_{2} \ldots w_{n}$, where w_{i} consists of c_{i} characters. A formatting of W consists of a partition of the words in W into lines. In the words assigned to a single line, there should be a space after each word except the last; and the maximum line length is L. Thus, if $w_{j}, w_{j+1}, \ldots, w_{k}$ are assigned to one line, then we should have

$$
\left[\sum_{i=j}^{k-1}\left(c_{i}+1\right)\right]+c_{k} \leq L
$$

We will call an assignment of words to a line valid if it satisfies this inequality. The difference between the left-hand side and the right-hand side is called the slack of the line, that is, the number of spaces left at the right margin.

Give an efficient algorithm that finds a partition of a set of words W into valid lines, so that the sum of the squares of the slacks of all lines (including the last line) is minimized.

Problem 3: Integer linear programming (ILP) is the same as linear programming except that one considers only integer solutions, i.e.,

$$
\begin{array}{r}
\min c^{T} x \\
A x \leq b \\
x \geq 0, x \in \mathbb{Z}
\end{array}
$$

The vertex cover of a graph $G=(V, E)$ is a subset $C \subseteq V$ of vertices so that each edge in E is incident to at least one of the vertices in C.
(i) Show that the problem of computing the minimum-size vertex cover can be formulated as an instance of ILP.
(ii) Suppose we relax the ILP in (i) to an LP by removing the integer constraint $x \in \mathbb{Z}$. Show that there is a graph for which the optimal LP solution is not integral (i.e., values of some of the variables are not integers).

Problem 4: Write the dual to the following linear program.

$$
\begin{array}{r}
\max x_{1}+x_{2} \\
2 x_{1}+x_{2} \leq 3 \\
x_{1}+3 x_{2} \leq 5 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Find the optimal solutions to both primal and dual LPs using the simplex method. For the primal, you can use $x_{1}=0$ and $x_{2}=0$ as the initial basic feasible solution (BFS), and for the dual, you can use $y_{1}=1$ and $y_{2}=0$ as the initial BFS, where y_{1} and y_{2} are the dual variables associated with the first and second constraints in the primal, respectively.

Problem 5: (Matching pennies) In this simple two-player game, the players (call them R and C) each choose an outcome, heads or tails. If both outcomes are equal, C gives a dollar to R; if the outcomes are different, R gives a dollar to C.
(i) Represent the payoffs by a 2×2 matrix.
(ii) What is the value of this game? Compute the optimal strategies for the two players using the simplex algorithm.

