Due Date: April 9, 2013

Problem 1: A subsequence is obtained by extracting a subset of elements from a sequence, but keeping them in the same order; the elements of the subsequence need not be contiguous in the original sequence.

Call a sequence $X[1 . . k]$ of numbers oscillating if $X[i]<X[i+1]$ for all even i, and $X[i]>$ $X[i+1]$ for all odd i. Describe an efficient algorithm to compute the length of the longest oscillating subsequence of an arbitrary array A of n integers.

Problem 2: Suppose we are given a sequence of undirected graphs $G_{0}, G_{1}, G_{2}, \ldots, G_{b}$ with the same node set V and different edge sets $E_{0}, E_{1}, E_{2}, \ldots, E_{b}$; that is, $G_{i}=\left(V, E_{i}\right)$ for $i=$ $0,1, \ldots, b$. Assume every G_{i} is connected.

Now consider two particular nodes $s, t \in V$. For an s - t path P in one of the graphs G_{i}, we define the length of P to be the number of edges in P, denoted as $\ell(P)$. Our goal is to produce a sequence of paths $P_{0}, P_{1}, \ldots, P_{b}$, where P_{i} is an s-t path in G_{i}, such that each path is relatively short and there are not too many changes. Formally, we define changes $\left(P_{0}, P_{1}, \ldots, P_{b}\right)$ to be the number of indices $i(0 \leq i \leq b-1)$ for which $P_{i} \neq P_{i+1}$.

Fix a constant $K>0$. We define the cost of the sequence of paths $P_{0}, P_{1}, \ldots, P_{b}$ to be

$$
\operatorname{cost}\left(P_{0}, P_{1}, \ldots, P_{b}\right)=\sum_{i=0}^{b} \ell\left(P_{i}\right)+K \cdot \operatorname{changes}\left(P_{0}, \ldots, P_{b}\right) .
$$

(i) Suppose it is possible to choose a single path P that is an $s-t$ path in each of the graphs G_{0}, \ldots, G_{b}. Give a polynomial-time algorithm to find the shortest such path.
(ii) Give a polynomial-time algorithm to find a sequence of paths P_{0}, \ldots, P_{b} of minimum cost, where P_{i} is an s - t path in G_{i} for $i=0, \ldots, b$.

Problem 3: Integer linear programming (ILP) is the same as linear programming except that one considers only integer solutions, i.e.,

$$
\begin{array}{r}
\min c^{T} x \\
A x \leq b \\
x \geq 0, x \in \mathbb{Z}
\end{array}
$$

The vertex cover of a graph $G=(V, E)$ is a subset $C \subseteq V$ of vertices so that each edge in E is incident to at least one of the vertices in C.
(i) Show that the problem of computing the minimum-size vertex cover can be formulated as an instance of ILP.
(ii) Suppose we relax the ILP in (i) to an LP by removing the integer constraint $x \in \mathbb{Z}$. Show that there is a graph for which the optimal LP solution is not integral (i.e., values of some of the variables are not integers).

Problem 4: Write the dual to the following linear program.

$$
\begin{array}{r}
\max x_{1}+x_{2} \\
2 x_{1}+x_{2} \leq 3 \\
x_{1}+3 x_{2} \leq 5 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

Find the optimal solutions to both primal and dual LPs using the simplex method. For the primal, you can use $x_{1}=0$ and $x_{2}=0$ as the initial basic feasible solution (BFS), and for the dual, you can use $y_{1}=1$ and $y_{2}=0$ as the initial BFS, where y_{1} and y_{2} are the dual variables associated with the first and second constraints in the primal, respectively.

Problem 5: (Matching pennies) In this simple two-player game, the players (call them R and C) each choose an outcome, heads or tails. If both outcomes are equal, C gives a dollar to R; if the outcomes are different, R gives a dollar to C.
(i) Represent the payoffs by a 2×2 matrix.
(ii) What is the value of this game? Compute the optimal strategies for the two players using the simplex algorithm.

