
Sampling from Databases

CompSci 590.02
Instructor: AshwinMachanavajjhala

1Lecture 2 : 590.02 Spring 13

Recap

• Given a set of elements, random sampling when number of
elements N is known is easy if you have random access to any
arbitrary element
– Pick n indexes at random from 1 … N

– Read the corresponding n elements

• Reservoir Sampling: If N is unknown, or if you are only allowed
sequential access to the data
– Read elements one at a time. Include tth element into a reservoir of size n

with probability n/t.

– Need to access at most n(1+ln(N/n)) elements to get a sample of size n

– Optimal for any reservoir based algorithm

Lecture 2 : 590.02 Spring 13 2

Today’s Class

• In general, sampling from a database where elements are only
accessed using indexes.
– B+-Trees

– Nearest neighbor indexes

• Estimating the number of restaurants in Google Places.

Lecture 2 : 590.02 Spring 13 3

B+ Tree

• Data values only appear in the leaves

• Internal nodes only contain keys

• Each node has between fmax/2 and fmax children
– fmax = maximum fan-out of the tree

• Root has 2 or more children

Lecture 2 : 590.02 Spring 13 4

Problem

• How to pick an element uniformly at random from the B+ Tree?

Lecture 2 : 590.02 Spring 13 5

Attempt 1: Random Path

Choose a random path

• Start from the root

• Choose a child uniformly at random

• Uniformly sample from the resulting leaf node

• Will this result in a random sample?

Lecture 2 : 590.02 Spring 13 6

Attempt 1: Random Path

Choose a random path

• Start from the root

• Choose a child uniformly at random

• Uniformly sample from the resulting leaf node

• Will this result in a random sample?

NO.
Elements reachable from
internal nodes with low
fanout are more likely.

Lecture 2 : 590.02 Spring 13 7

Attempt 2 : Random Path with Rejection

• Attempt 1 will work if all internal nodes have the same fan-out

• Choose a random path
– Start from the root

– Choose a child uniformly at random

– Uniformly sample from the resulting leaf node

• Accept the sample with probability

Lecture 2 : 590.02 Spring 13 8

Attempt 2 : Correctness

• Any root to leaf path is picked with probability:

• The probability of including a record
given the path:

Lecture 2 : 590.02 Spring 13 9

Attempt 2 : Correctness

• Any root to leaf path is picked with probability:

• The probability of including a record
given the path:

• The probability of including a record:

Lecture 2 : 590.02 Spring 13 10

Attempt 3 : Early Abort

Idea: Perform acceptance/rejection test at each node.

• Start from the root

• Choose a child uniformly at random

• Continue the traversal with probability:

• At the leaf, pick an element uniformly at
random, and accept it with probability :

Proof of correctness: same as previous algorithm

Lecture 2 : 590.02 Spring 13 11

Attempt 4: Batch Sampling

• Repeatedly sampling n elements will require accessing the
internal nodes many times.

Lecture 2 : 590.02 Spring 13 12

Attempt 4: Batch Sampling

• Repeatedly sampling n elements will require accessing the internal nodes
many times.

Perform random walks simultaneously:

• At the root node, assign each of the n samples to one of its
children uniformly at random

– n  (n1, n2, …, nk)

• At each internal node,
– Divide incoming samples uniformly across children.

• Each leaf node receives s samples. Include each sample with
acceptance probability

Lecture 2 : 590.02 Spring 13 13

Attempt 4 : Batch Sampling

• Problem: If we start the algorithm with n, we might end up with
fewer than n samples (due to rejection)

Lecture 2 : 590.02 Spring 13 14

Attempt 4 : Batch Sampling

• Problem: If we start the algorithm with n, we might end up with
fewer than n samples (due to rejection)

• Solution: Start with a larger set

• n’ = n/βh-1, where β is the ratio of average fanout and fmax

Lecture 2 : 590.02 Spring 13 15

Summary of B+tree sampling

• Randomly choosing a path weights elements differently
– Elements in the subtree rooted at nodes with lower fan-out are more likely

to be picked than those under higher fan-out internal nodes

• Accept/Reject sampling helps remove this bias.

Lecture 2 : 590.02 Spring 13 16

Nearest Neighbor indexes

Lecture 2 : 590.02 Spring 13 17

Problem Statement

Input:

• A database D that can’t be accessed directly, and where each
element is associated with a geo location.

• A nearest neighbor index (elements in D near <x, y>)
– Assumption: index returns k elements closest to the point <x,y>

Output

• Estimate

Lecture 2 : 590.02 Spring 13 18

Problem Statement

Input:

• A database D that can’t be accessed directly, and where each element is
associated with a geo location.

• A nearest neighbor index (elements in D near <x, y>)

– Assumption: index returns k elements closest to the point <x,y>

Output

• Estimate

Applications

• Estimate the size of a population in a region

• Estimate the size of a competing business’ database

• Estimate the prevalence of a disease in a region

Lecture 2 : 590.02 Spring 13 19

Attempt 1: Naïve geo sampling

For i = 1 to N

• Pick a random point pi = <x,y>

• Find element di in D that is closes to pi

• Return

Lecture 2 : 590.02 Spring 13 20

Problem?

Lecture 2 : 590.02 Spring 13 21

Elements d7 and d8 are much more
likely to be picked than d1

Voronoi Cell:
Points for which d4 is
the closest element

Voronoi Decomposition

Lecture 2 : 590.02 Spring 13 22

Perpendicular
bisector of d4, d3

Voronoi Decomposition

Lecture 2 : 590.02 Spring 13 23

Voronoi decomposition of
Restaurants in US

Lecture 2 : 590.02 Spring 13 24

Attempt 2: Weighted sampling

For i = 1 to N

• Pick a random point pi = <x,y>

• Find element di in D that is closes to pi

• Return

Lecture 2 : 590.02 Spring 13 25

Attempt 2: Weighted sampling

For i = 1 to N

• Pick a random point pi = <x,y>

• Find element di in D that is closes to pi

• Return

Problem:
We need to compute the area of the Voronoi cell.
We do not have access to other elements in the database.

Lecture 2 : 590.02 Spring 13 26

Using index to estimate Voronoi cell

• Find nearest point

• Compute perpendicular
bisector

• a0 is a point on the
Voronoi cell.

Lecture 2 : 590.02 Spring 13 27

d

e0

a0

Using index to estimate Voronoi cell

• Find a point on (a0, b0)
which is just inside the
Voronoi cell.
– Use binary search

– Recursively check
whether mid point is in
the Voronoi cell

Lecture 2 : 590.02 Spring 13 28

d

e0

a0

b0

a1

Using index to estimate Voronoi cell

• Find nearest points to
a1

– a1 has to be equidistant
to one point other than
e0 and d

• Next direction is
perpendicular to (e1,d)

Lecture 2 : 590.02 Spring 13 29

d

e0

a0

b0

a1

e1

b1

Using index to estimate Voronoi cell

• Find nearest points to
a1

– a1 has to be equidistant
to one point other than
e0 and d

• Next direction is
perpendicular to (e1,d)

• Find next point …

• … and so on …

Lecture 2 : 590.02 Spring 13 30

d

e0

a0

b0

a1

e1

b1

a2

e2
b2

Using index to estimate Voronoi cell

• Find nearest points to
a1

– a1 has to be equidistant
to one point other than
e0 and d

• Next direction is
perpendicular to (e1,d)

• Find next point …

• … and so on …

Lecture 2 : 590.02 Spring 13 31

d

e0

a0

b0

a1

e1

b1

a2

e2
b2

a3

a4

e3

e4

Number of samples

• Identifying each ai requires a binary search
– If L is the max length of (ai, bi),

then ai+1 can be computed with ε error in O(log (L/ε)) calls to the index

• Identifying the next direction requires another call to the index

• If number of edges of Voronoi cell = k,
total number of calls to the index = O(K log(L/ε))

• Average number of edges of a Voronoi cell < 6
– Assuming general position …

Lecture 2 : 590.02 Spring 13 32

Summary

• Many web services allow access to databases using nearest
neighbor indexes.

• Showed a method to sample uniformly from such databases.

• Next class: Monte Carlo Estimation for #P-hard problems.

Lecture 2 : 590.02 Spring 13 33

References

• F. Olken, “Random Sampling from Databases” , PhD Thesis, U C Berkeley, 1993

• N. Dalvi, R. Kumar, A. Machanavajjhala, V. Rastogi, “Sampling Hidden Objects using
Nearest Neighbor Oracles”, KDD 2011

Lecture 2 : 590.02 Spring 13 34

