Markov Chains and MCMC
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Recap: Monte Carlo Method

If U is a universe of items, and G is a subset satisfying some

property, we want to estimate |G|

— Either intractable or inefficient to count exactly

Fori=1toN

2i Xi

Return C = U] -

p(1 — )

VN

* Chooseu € U, uniformly at random

e Check whetheruesG?
 LetX, =1ifuegG, X, =0 otherwise

Variance: |U]|  where i = —
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Recap: Monte Carlo Method

When is this method an FPRAS?

 |U]| is known and easy to uniformly sample from U.
* Easy to check whether sampleisin G
 |U|/|G]| is small... (polynomial in the size of the input)

Theorem:

ul 3 2

VO<e<150<d6<1Lif N> —-—-In—
/ G| &2 )

then,P[(1—o)|G| < C<(1+&)IGl|=1-6
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Recap: Importance Sampling

In certain case |G| << |U|, hence the number of samples is not
small.

Suppose q(x) is the density of interest, sample from a different
approximate density p(x)
q(x)

[ reacoax= | f(x)( . ))p@)dx

q(x)
p(x)

= Eyeo [F00)

q(X;)
A p(X;)’

where X; are sampled from p(x) D k
| . LJUKC

Lecture 4 : 590.02 Spring 13
UNINERSITTY

N

1

Hence,ff(x)q(x)dx ~ 5
1=0



Today’s Class

e Markov Chains

* Markov Chain Monte Carlo sampling
— a.k.a. Metropolis-Hastings Method.

— Standard technique for probabilistic inference in machine learning, when
the probability distribution is hard to compute exactly
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Markov Chains

* Consider a time varying random process which takes the
value X; at time t

— Values of X, are drawn from a finite (more generally countable) set
of states Q.

* {X, . X... X} is @ Markov Chain if the value of
X, only depends on X ,
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Transition Probabilities

* Pr[Xyi=s; | X; =5, denoted by P(i,j), is called the transition
probability
— Can be represented as a |Q]| x |Q]| matrix P.
— P(i,j) is the probability that the chain moves from state i to state j

* Letm(t) = Pr[X; =s,] denote the probability of reaching state i at
timet

;i (t) = Pr|X, = SJ,-]
= 3 e, = §Hocs = 5] Pl = 50

=ZP(i,j)- Pr(X:_, = s;] ZP(L Dt —1)
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Transition Probabilities

* Pr[Xyi=s; | X; =5, denoted by P(i,j), is called the transition
probability
— Can be represented as a |Q]| x |Q]| matrix P.
— P(i,j) is the probability that the chain moves from state i to state j

* |If m(t) denotes the 1x|Q| vector of probabilities of reaching all
the states at time t,

w(t) = m(t —1)P

Duke
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Example

e Suppose Q = {Rainy, Sunny, Cloudy}

 Tomorrow’s weather only depends on today’s weather.
— Markov process

Pr[X.,, = Sunny | X, = Rainy] = 0.25

0.5 0.25 0.25
P= |05 0 0.5
0.25 0.25

Pr[X.,; =Sunny | X. =Sunny] =0

No 2 consecutive days of sun (Seattle?)
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Example

Suppose Q = {Rainy, Sunny, Cloudy}
Tomorrow’s weather only depends on today’s weather.

— Markov process

P= |05 0 0.5

0.5 0.25 0.25}
0.25 0.25 0.5

Suppose today is Sunny. 7(0) = [0 1 0]
What is the weather 2 days from now?

n(2) = w(0)P* =[0.375 0.25 0.375]
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Example

Suppose Q = {Rainy, Sunny, Cloudy}
Tomorrow’s weather only depends on today’s weather.

— Markov process

P= |05 0 0.5

0.5 0.25 0.25}
0.25 0.25 0.5

Suppose today is Sunny. 7(0) = [0 1 0]
What is the weather 7 days from now?

n(7) = w(0)P” =[0.4 0.2 0.4]
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Example

Suppose Q = {Rainy, Sunny, Cloudy}
Tomorrow’s weather only depends on today’s weather.

— Markov process

P= |05 0 0.5

0.5 0.25 0.25}
0.25 0.25 0.5

Suppose today is Rainy. (0) =[1 0 0]

What is the weather 2 days from now?
n(2) = m(0)P* = [0.4375 0.1875 0.375]

Weather 7 days from now?
n(7) = w(0)P” =[0.4 0.2 0.4]
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Example

0.5 0.25 0.25
P=|05 0 0.5}
0.25 0.25 0.5
m(0) =[0 1 0] n(7) = m(0)P” =[0.4 0.2 0.4]
m(0) =[1 0 0] n(7) = m(0)P” =[0.4 0.2 0.4]

After sufficient amount of time the expected weather distribution is
independent of the starting value.

Moreover, m(7) = m(8) = w(9) =--=[0.4 02 0.4]
This is called the stationary distribution.
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Stationary Distribution

ntis called a stationary distribution of the Markov Chain if

T = 1P

* That s, once the stationary distribution is reached, every

subsequent X. is a sample from the distribution rt

How to use Markov Chains:

Suppose you want to sample from a set |Q|, according to distribution 1t
Construct a Markov Chain (P) such that mt is the stationary distribution

Once stationary distribution is achieved, we get samples from the correct
distribution.
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Conditions for a Stationary Distribution

A Markov chain is ergodic if it is:

* Irreducible: A state jcan be reached from any state i in some
finite number of steps.

1 0 0
P= |0 05 0.5
0 0.25 0.75
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Conditions for a Stationary Distribution

A Markov chain is ergodic if it is:

* Irreducible: A state jcan be reached from any state i in some
finite number of steps.

1 0 0
P= |0 05 0.5
0 0.25 0.75

* Aperiodic: A chain is not forced into cycles of fixed length
between certain states 0 0 05 05]

0 0 05 0.5
0.5 0.5 0 O

0.5 0.5 0 0 .
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Conditions for a Stationary Distribution

A Markov chain is ergodic if it is:

* Irreducible: A state j can be reached from any state i in some
finite number of steps.

* Aperiodic: A chain is not forced into cycles of fixed length
between certain states

Theorem: For every ergodic Markov chain, there is a unique vector 1
such that for all initial probability vectors 1t(0),

lim; ,, m(t) = lim;,,m(0O)Pt ==
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Sufficient Condition: Detailed Balance

* In a stationary walk, for any pair of states j, k, the Markov Chain is
as likely to move from j to k as from k to j.

* Also called reversibility condition.
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Example: Random Walks

* Consider a graph G = (V,E), with weights on edges (w(e))

Random Walk:
e Start at some node u in the graph G(V,E)

 Move from node u to node v with probability proportional to
w(u,v).

Random walk is a Markov chain
* Statespace =V

 P(uyv)= w(uyv)/Zw(uyv) if(uv)eE
= 0 if(uv)isnotinkE
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Example: Random Walk

Random walk is ergodic if:

* Irreducible: A state jcan be reached from any state i in some
finite number of steps.

1 0 0 ]
. P= 1|0 05 0.5
If G is connected. 0 025 0.75

* Aperiodic: A chain is not forced into cycles of fixed length

between certain states _ -
0 0O 05 05

0 O 05 0.5
If G is not bipartite P 05 05 0 0

0.5 0.5 0 0 .
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Example: Random Walk

Uniform random walk:
* Suppose all weights on the graph are 1

 P(u,v)=1/deg(u) (or0)

Theorem: If G is connected and not bipartite, then the stationary
distribution of the random walk is

r, = deg (u)/2|E|

Duke
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Example: Random Walk

Symmetric random walk:
e Suppose P(u,v) = P(v,u)

Theorem: If G is connected and not bipartite, then the stationary
distribution of the random walk is
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Stationary Distribution

ntis called a stationary distribution of the Markov Chain if

T = 1P

* That s, once the stationary distribution is reached, every

subsequent X. is a sample from the distribution rt

How to use Markov Chains:

Suppose you want to sample from a set |Q|, according to distribution 1t
Construct a Markov Chain (P) such that mt is the stationary distribution

Once stationary distribution is achieved, we get samples from the correct
distribution.
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Metropolis-Hastings Algorithm (MCMC)

e Suppose we want to sample from a complex distribution
f(x) = p(x) / K, where K is unknown or hard to compute

 Example: Bayesian Inference
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Metropolis-Hastings Algorithm

Start with any initial value x,, such that p(x,) >0

Using current value x, ,, sample a new point according some
proposal distribution q(x, | x, )

p(x:) q(Xi—q |xt))

Compute a(x¢|x;—1) = min (1,
P e P(Xe—1) q(x¢|xe—1)

With probability a accept the move to x,,
otherwise reject x,
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Why does Metropolis-Hastings work?

Metropolis-Hastings describes a Markov chain with transition
probabilities:

p(y) q(xly))

P(x,y) = q(y |x) min (Lp(x)q(ylx)

We want to show that f(x) = p(x)/K is the stationary distribution

Recall sufficient condition for stationary distribution:

;i P(j, k) = mP(k,j)

Duke
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Why does Metropolis-Hastings work?

* Metropolis-Hastings describes a Markov chain with transition
probabilities:

p(y) q(xly))

P(x,y) = q(y |x) min (Lp(x)q(ylx)

» Sufficient to show: p(x)P(x,y) = p(y)P(y,x)
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Proof: Case 1

p(y) q(xly))

P(x,y) = q(y |x) min (Lp(x)q(ylx)

Suppose P(Wqx|y) = p(x) q(¥|x)
Then, P(x,y) =aly | x)

Therefore
P(x,y)p(x) = aly | x) p(x) = ply) a(x | y) = P(y,x) p(y)

. Duke
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Proof: Case 2

p(y) q(xly))

P(x,y) = q(y |x) min (Lp(x)q(ylx)

Suppose,  p(y)q(x|y) > p(x) q(y|x)

B _p(x)q(y|x)

Then, — alyl) =1, alxly) = p(¥)q(xly)
Py, x)p(y) = q(x|y)a(x|y)p(y)

= gty PRIV s a(yin)

p(y)q(xly)p(y)
=pX)qy|x)alylx) = p(x)P(x,y)

Proof of Case 3 is identical.
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When is stationary distribution reached?

e Nextclass ...
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