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This Class

* Weighted Majority Algorithm

— Multiple experts problem

* Follow the perturbed Leader
— Online shortest paths

 Multi-armed bandit problems
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Multiple Experts Problem

Will it rain

Yes Yes Yes No
today?
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What is the best prediction based on these experts?
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Multiple Experts Problem

Suppose we know the best expert (who makes the least error),
then we can just return that expert says.

— This is the best we can hope for.

We don’t know who the best expert is.

— But we can learn ... we know whether it rained or not at the end of the
day.

Regret Minimization : number of mistakes made by our

algorithms should be close to the number of mistakes made by
the best expert.
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Weighted Majority Algorithm
[Littlestone&Warmuth ‘94]
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Weighted Majority Algorithm

[Littlestone&Warmuth ‘94]
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Weighted Majority Algorithm

 Maintain weights (or probability distribution) over experts.

Answering/Prediction:
 Answer using weighted majority, OR

 Randomly pick an expert based on current probability
distribution. Use random experts answer.

Update:
e Observe truth.

 Decrease weight (or probability) assigned to the experts who are
wrong.
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Error Analysis

[Arora, Hazan, Kale ‘05]
Theorem:

After t steps,
let m(t,j) be the number of errors made by expert j

let m(t) be the number of errors made by algorithm
let n be the number of experts,

2 Inn

vj, m(t) < + 2(1 + &)m(t,))
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Error Analysis: Proof

Let ¢(t) = Xw.. Then, @(1) = n.

When the algorithm makes a mistake,

@(t+1) = @(t) (1/2 + ¥2(1-¢)) = @(1)(1-¢/2)
When the algorithm is correct,
@(t+1) = (Y

Therefore,
@(t) <n(1-g/2)mO
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Error Analysis: Proof

@(t) <n(1l-g/2)™®
Also, Wi(t) = (1-g)m®D)

@) = W,(t) =>n(1-g/2)"O® > (1-g)mED

Hence, m(t) = 2/elnn 4+ 2(1+¢)m(tj)
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Online Learning

* Mistake bound model
— Algorithm receives an unlabeled example x (like our experts)
— Algorithm predicts a classification of this example p (either -1 or +1)
— Environment produces the correct answer y (either -1 or +1)

 Winnow algorithm
— Learn a weight function w such that sign(w x) = p
— Same as the Weighted Majority algorithm
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Online Shortest Paths Problem

Input: A directed graph G = (V,E), and a fixed pair of nodes (u,v)
Each period (time t), we pick a path from u to v, and the length of
the path is revealed.

Cost at time t = length of chosen path.
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Online shortest paths

* We could have used weighted majority, where each path is an
expert

e But, number of paths (experts) is exponential

Lecture 10 : 590.02 Spring 13 13 DUke

UNIVYERSITY



Follow the perturbed leader (FPL)

Randomized variant ...
Initialization:
 Each expertjis assigned a costc(j, 0) =0

Prediction (time t):

* For each expert j select p(j, t) >=0 from an exponential
distribution ( p(x) ~ gee®x)

 Make the same prediction as expert with smallest c(j, t) — p(j, t)

Update:
* |f expertj’s prediction is correct, c(j, t+1) = c(j, t)
e Else, c(j, t+1) =c(j,t) +1
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Error Analysis

Theorem:

After t steps,
let m(t,j) be the number of errors made by expert j

let m(t) be the number of errors made by algorithm
let n be the number of experts,

E(m(t)) <(A+e&m(t,j)+ O (%logn)
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Linear Generalization

* FPL works for more general prediction problems, where

— The prediction and states are in R"
— Total cost of the decisions are 2 d, s,
— 2 d, s, should be close to ming  z d s,

 Multiple experts:
— d:0/1vector where d[j] = 1 if expert j is picked by the algorithm
— s:0/1 vector where s[j] = 0 if jth expert is correct.
— Total cost is number of mistakes.
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Online Shortest Paths

Algorithm:

Initialize all edge costs c(e,0) = 0.

At each time period:

* For each edge, pick p(e, t) from an exponential distribution

e Use the shortest path in the graph with lengths c(e,t) + p(e,t) on
each edge.
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Online shortest paths

We could have used weighted majority, where each path is an
expert

But, number of paths (experts) is exponential

FPL allows solving the problem in polynomial time.

O ]
FElcost] < (1 + ¢)(best-time in hindsight) + (mn log n)

3
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Multi-armed Bandit Problem

A set of actions (or arms)

Selecting action a in A (or pulling an arm) results in a reward from
an unknown probability distribution P(r | a)

At time=t, agent selects action a,

Environment generates reward r, = —— ]
—— LR
. : ‘ﬂﬁ 1“ |
Goal is to maximize Z, r, ) @ v |
= QE@ i O
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Application

Web advertising
— What is the best ad/article to show a user?

Clinical trials
— lIdentifying efficient drugs with minimal patient loss/side-effects

Web search
— Which result must be ranked at the top?
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Regret

Action value: Q(a) = E(r | a) (mean reward)
Optimal value: V* = Q(a*) = max, Q(a)
Regret at time t: E[ V* - Q(a,)]

Maximizing cumulative reward is equivalent to minimizing total
regret.
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Explore vs Exploit

Exploit: Make the best decision given the current information
— Keep pulling the arm with the current best estimate for the reward

Explore: Gather more information
— Pull a different arm

We can estimate the action value Q(a) by Monte Carlo estimation
if lever a was pulled N,(a) times as follows.

_— 1
Q:(a) = Nt(a)Ertl(atza)
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Greedy Algorithm

Start with some initial estimate for Q(a) for all a
Keep pulling the lever with the estimated action value.

a’ = argmaxgey @\t(a)

Continuous Exploitation

Can get stuck in suboptimal action forever
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e-Greedy

With probability 1-€, pull the best level
With probability €, choose a random different lever to pull

Constant Exploration

Let A, = V* - Q(a). Then total regret at t steps is at least:

“Tal ZA
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UCB1

L , [Auer et al 2002]
 Optimism in the face of uncertainty

Do not dismiss an action unless it is pretty certain that it has a
low value.
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UCB1

* Estimate an upper confidence bound for each action value

PlQ(a) > Q;(a) + U (a)] < &

* This depends on the number of times action a is selected
— Small N(a) => Large upper bound (we are not sure Q(a) is small)
— Large N(a) => small upper bound (estimate of Q(a) is very good)

e Select the action maximizing Upper Confidence Bound (UCB)

a = argmaxges Qr(@) + Up(a)
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UCB1

Theorem:
The UCB1 algorithm achieves logarithmic asymptotic total regret

t—o oo

lim R, = 8logt ZA“
a
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