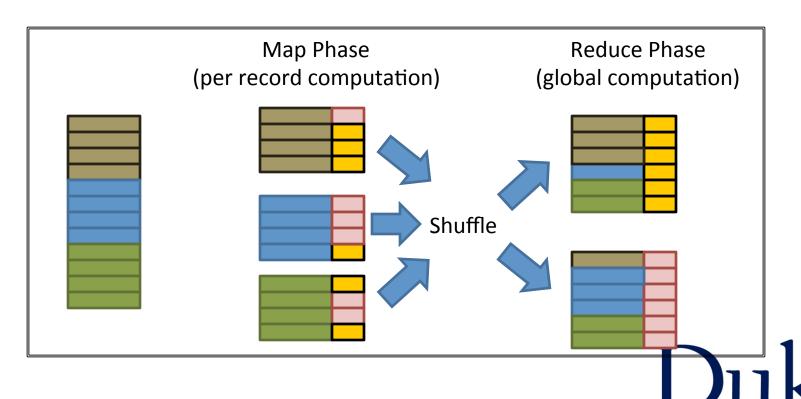
Map Reduce (contd.)

CompSci 590.03 Instructor: Ashwin Machanavajjhala

Recap: Map-Reduce

```
map (k1,v1) \rightarrow list(k2,v2);
reduce (k2,list(v2)) \rightarrow list(k3,v3).
```



Lecture 12: 590.02 Spring 13

This Class

High Level Languages for Map Reduce

Join Processing

HIGH LEVEL LANGUAGES

Lecture 12: 590.02 Spring 13

Word Count in Pig

Load A = 'documents' USING PigStorage('\t') AS (id, docstring)

// load the data using a built in loader assuming data is (id, document string) delimited by tabs

B = FOREACH A GENERATE FLATTEN(Tokenize(docstring)) AS word

// Mapper UDF Tokenize generates a set of words

// FLATTEN: flattens a set into multiple records.

C = GROUP B BY word

// groups the data by word

D = FOREACH C GENERATE group, COUNT(B)

// Built in reduce function counts the number of times each word appears in B

STORE D

GROUP

```
A: {name: chararray,age: int,gpa: float}
DUMP A;
(John, 18, 4.0F)
(Mary, 19, 3.8F)
(Bill, 20, 3.9F)
(Joe, 18, 3.8F)
B = GROUP A BY age;
DESCRIBE B;
B: {group: int, A: {name: chararray,age: int,gpa: float}}
ILLUSTRATE B;
etc ...
        group: int | A: bag({name: chararray,age: int,gpa: float}) |
         18 {(John, 18, 4.0), (Joe, 18, 3.8)}
                    {(Bill, 20, 3.9)}
          20
DUMP B;
(18, {(John, 18, 4.0F), (Joe, 18, 3.8F)})
(19, \{(Mary, 19, 3.8F)\})
```

A = load 'student' AS (name:chararray,age:int,gpa:float);

DESCRIBE A;

(20, {(Bill, 20, 3.9F)})

Pig UDFs

All user defined functions are written in java.

```
package myudfs;
import java.io.IOException;
import org.apache.pig.EvalFunc;
import org.apache.pig.data.Tuple;
import org.apache.pig.impl.util.WrappedIOException;
public class UPPER extends EvalFunc<String>
{
    public String exec(Tuple input) throws IOException {
        if (input == null || input.size() == 0)
            return null;
        try{
            String str = (String)input.get(0);
                return str.toUpperCase();
        }catch(Exception e) {
            throw WrappedIOException.wrap("Caught exception processing input row ", e);
        }
    }
}
```

See http://wiki.apache.org/pig/UDFManual

Algebraic UDFs

- Aggregate functions take a bag and return a scalar value
- Some aggregate functions (e.g., associative and commutative operations) can be computed incrementally in a distributed fashion.

```
public interface Algebraic{
   public String getInitial();
   public String getIntermed();
   public String getFinal();
}
```


Other functions

```
    COGROUP // group multiple tables on the same value
    FILTER // discard records that do not satisfy some property
    UNION // union of two tables
    SAMPLE // randomly sample each record with probability p
    DISTINCT // remove duplicates
    LIMIT // return a subset of n (not random)
```

See http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html

COGROUP

```
A = LOAD 'data1' AS (owner:chararray,pet:chararray);

DUMP A;
(Alice,turtle)
(Alice,goldfish)
(Alice,cat)
(Bob,dog)
(Bob,cat)

B = LOAD 'data2' AS (friend1:chararray,friend2:chararray);

DUMP B;
(Cindy,Alice)
(Mark,Alice)
(Paul,Bob)
(Paul,Jane)
```

```
X = COGROUP A BY owner, B BY friend2;
```

```
(Alice,{(Alice,turtle),(Alice,goldfish),(Alice,cat)},{(Cindy,Alice),(Mark,Alice)})
(Bob,{(Bob,dog),(Bob,cat)},{(Paul,Bob)})
(Jane,{},{(Paul,Jane)})
```


JOIN

```
A = LOAD 'data1' AS (al:int,a2:int,a3:int);
DUMP A;
(1,2,3)
(4,2,1)
(8,3,4)
(4,3,3)
(7,2,5)
(8,4,3)
B = LOAD 'data2' AS (b1:int,b2:int);
DUMP B;
(2,4)
(8,9)
(1,3)
(2,7)
(2,9)
(4,6)
(4,9)
```

```
X = JOIN A BY a1, B BY b1;

DUMP X;
(1,2,3,1,3)
(4,2,1,4,6)
(4,3,3,4,6)
(4,2,1,4,9)
(4,3,3,4,9)
(8,3,4,8,9)
(8,4,3,8,9)
```


JOIN PROCESSING

JOINs

- A = JOIN B BY fieldB, C BY fieldC PARALLEL 20
 - Specify the number of reduce tasks
- A = JOIN B BY fieldB, C BY fieldC USING 'replicated'
 - Can ask the system to use one of three ways to do join.

Join Types

Fragment Replicated Join:

- When one of the tables is small enough to fit in memory.
- Replicate the "small" table to all mappers containing the other "large" table.

Skewed Join:

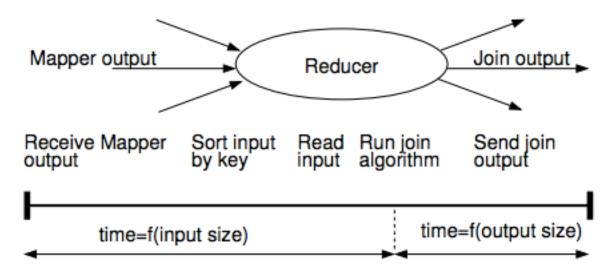
- When one of the join attributes is very skewed.
- Keys with large number of keys are split into multiple reducers.

Merge Join:

- When two datasets are already sorted on the join key
- Use sort merge join.

Join as an Optimization Problem

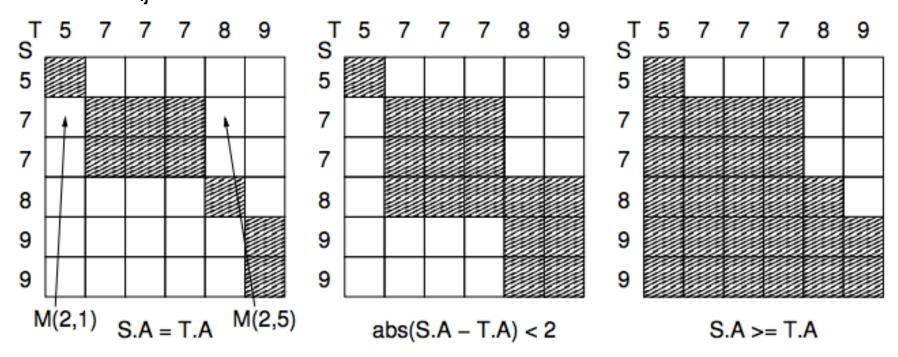
- Objective: minimize job completion time
- Cost at a reducer:



- Input-size dominated: Reducer input processing time is large
- Output-size dominated: Reducer output processing time is large

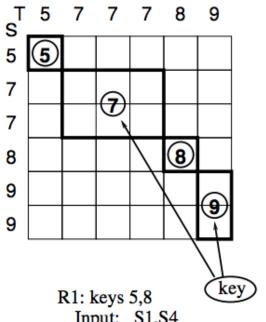
Join-Matrix

M_{ij} = pair of tuples that have S.key = i and T.key = j M_{ii} is shaded if corresponding tuples appear in the join output.



Goal: find a mapping between join matrix cells to reducers that minimizes completion time.

Join Alternatives



Input: S1,S4

T1,T5

Output: 2 tuples

R2: key 7

Input: S2,S3

T2,T3,T4

Output: 6 tuples

R3: key 9

Input: S5,S6

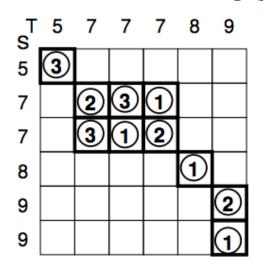
T6

Output: 2 tuples

max-reducer-input = 5max-reducer-output = 6

- Standard join algorithm
- Group both tables by key, send all tuples with the same key to a single reducer
- Skew in 7 leads to skewed execution times in reducers.

Join Alternatives



R1: key 1

Input: \$2,\$3,\$4,\$6

T3,T4,T5,T6

Output: 4 tuples

R2: key 2

Input: S2,S3,S5

T2,T4,T6

Output: 3 tuples

R3: key 3

Input: S1,S2,S3

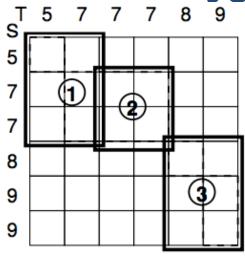
T1,T2,T3

Output: 3 tuples

max-reducer-input = 8 max-reducer-output = 4

- Fine grained load balancing
 - Divide the cells in the join matrix equally amongst the reducers
- Leads to replication of tuples to multiple reducers
 - S2, S3 are sent to all reducers.

Join Alternatives



Best of both worlds

7 is broken down into two reducers

• Limits replication of input as well as reduces output skew.

R1: key 1

Input: S1,S2,S3

T1.T2

Output: 3 tuples

R2: key 2

Input: S2,S3

T3,T4

Output: 4 tuples

R3: key 3

Input: S4,S5,S6

T5,T6

Output: 3 tuples

max-reducer-input = 5 max-reducer-output = 4

Computing a join

- Identify the regions in the join matrix that appear in the join.
 - Sufficient to identify a superset of the shaded cells in the join matrix

- Map regions of the join matrix to reducers such that each shaded cell is covered by a reducer.
- Develop a Map-reduce algorithm to assign tuples to the corresponding reducers.

Approach 1: Cross Product

- Cross Product: all cells in the join matrix are shaded
 - Superset of any join condition

Lecture 12 : 590.02 Spring 13

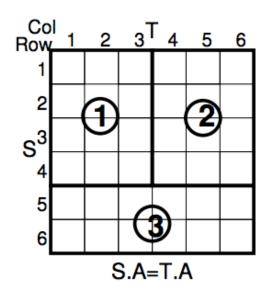
Cross Product

How to cover the cross product by r reducers?

- Need to cover all |S| |T| cells using r reducers
 - Max reducer output size >= |S||T|/r
 - Therefore, Max reducer input size >= 2 sqrt(|S||T|/r)
- We can match these lower bounds by assigning square regions from the join matrix of side = sqrt(|S| |T| / r) cells.
 - | S| and |T| must be multiples of sqrt(|S| |T| / r)
- Algorithms in the paper for optimal mapping to reducers for any given |S|, |T|, r.
 - At most 4 sqrt(|S| |T| / r) max reducer input and max reducer output.

Join Algorithm

Assign row ids from {1, 2, ..., |S|} and {1, 2, ..., |T|} to all rows in S and T, resp.



Map phase:

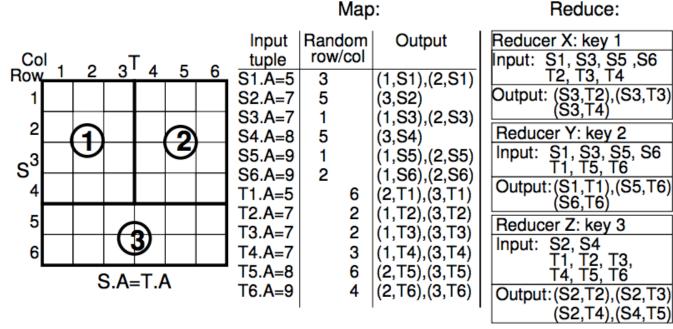
For $x \in S$, let $R = \{r1, ..., rk\}$ be the regions intersecting row x.id. Generate tuples: one tuple (r,x) for each $r \in R$ Similarly generate tuples for $y \in T$.

Reduce phase:

Perform the join (or cross product) of all the tuples input to the reducer.

Join Algorithm: 1-Bucket-Theta

- Problem: Need a new map step to assign ids to rows in S and T
- Instead, on seeing a new tuple in S or T, assign a random row id.

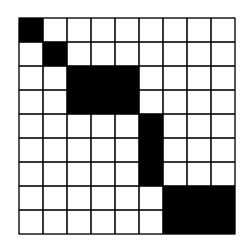


24 UNIVERSITY

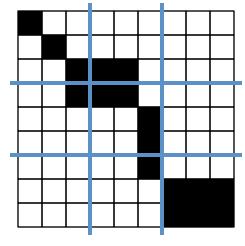
1-Bucket-Theta

- Since every cell in the entire cross product is sent to some reducer, any join algorithm can be implemented
 - By applying the appropriate join condition.
- If evaluating a join requires at least an x fraction of all cells in the join matrix, then max reducer input >= 2 sqrt(x|S||T|/r).
- 1-Bucket-Theta has max reducer input <= 4 sqrt(|S| |T|/r)
- Hence, at most a factor of 2/sqrt(x) off
 - Works well as long as x is large (at least 50%)

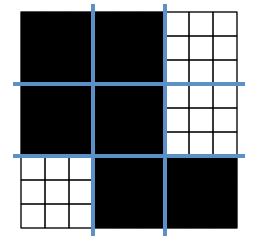
Approach 2: Approximate the Join Matrix



True join matrix



Histogram boundaries



Candidate cells to be covered by algorithm

Approach 2

- Need more detailed statistics about |S| and |T|
- Need to know something about the join predicate
 - Doesn't work for black-box join operators
 - Need to identify which blocks contain 0 cells that appear in the join
 - Equijoins, band-joins, inequality joins ...

 Paper shows a heuristic technique to divide candidate cells into reducers.

Summary

 High level languages help write complex programs without thinking about map and reduce

 Join operations can be optimized by dividing the join matrix into regions.

