Map Reduce (contd.)

CompSci 590.03
Instructor: Ashwin Machanavajjhala

Lecture 12 : 590.02 Spring 13 1 DUke

UNIVYERSITY

Recap: Map-Reduce

map (k1,v1) — list(k2,v2);
reduce (k2,list(v2)) — list(k3,v3).

Map Phase Reduce Phase
(per record computation) (global computation)

uke

UNIVYERSITY

Lecture 12 : 590.02 Spring 13 2

This Class

* High Level Languages for Map Reduce

* Join Processing

Lecture 12 : 590.02 Spring 13 3 DUke

UNIVYERSITY

HIGH LEVEL LANGUAGES

Lecture 12 : 590.02 Spring 13 4 DUke

UNIVYERSITY

Word Count in Pig

Load A = ‘documents’ USING PigStorage(‘\t’) AS (id, docstring)

// load the data using a built in loader assuming data is (id, document string)
delimited by tabs

B = FOREACH A GENERATE FLATTEN(Tokenize(docstring)) AS word

// Mapper UDF Tokenize generates a set of words
// FLATTEN: flattens a set into multiple records.

C = GROUP B BY word
// groups the data by word

D = FOREACH C GENERATE group, COUNT(B)

// Built in reduce function counts the number of times each word appears in B

STORED

Lecture 12 : 590.02 Spring 13 5 DUke

UNIVYERSITY

GROUP

A = load 'student' AS (name:chararray,age:int,gpa:float);

DESCRIBE A;
A: {name: chararray,age: int,gpa: float}

DUMP A;
(John,18,4.0F)
(Mary,19,3.8F)
(Bill, 20,3.9F)
(Joe, 18,3.8F)

B = GROUP A BY age;

DESCRIBE B;
B: {group: int, A: {name: chararray,age: int,gpa: float}}

ILLUSTRATE B;

etc ..

B	group: int	A: bag({name: chararray,age: int,gpa: float})
	18	{(John, 18, 4.0), (Joe, 18, 3.8)}
	20	{(Bill, 20, 3.9)}
DUMP B;

(18, {(John,18,4.0F), (Joe,18,3.8F)})
(19, {(Mary,19,3.8F)})
(20,{(B1i11,20,3.9F)})

Duke

UNIVYERSITY

Pig UDFs

All user defined functions are written in java.

package myudfs;

import java.io.IOException;

import org.apache.pig.EvalFunc;

import org.apache.pig.data.Tuple;

import org.apache.pig.impl.util.WrappedIOException;

public class UPPER extends EvalFunc<String>

{
public String exec(Tuple input) throws IOException {
if (input == null || input.size() == 0)
return null;
try{
String str = (String)input.get(0);
return str.toUpperCase();
}catch(Exception e){
throw WrappedIOException.wrap("Caught exception processing input row ", e);
}
}
}

See http://wiki.apache.org/pig/UDFManual

Lecture 12 : 590.02 Spring 13 DUke

VERS LT Y

Algebraic UDFs

Aggregate functions take a bag and return a scalar value

Some aggregate functions (e.g., associative and commutative
operations) can be computed incrementally in a distributed
fashion.

1 public interface Algebraic/{

2 public String getInitial();
3 public String getIntermed();
4 public String getFinal();

o

}

Lecture 12 : 590.02 Spring 13 8 DUke

UNIVYERSITY

Other functions

COGROUP // group multiple tables on the same value

FILTER // discard records that do not satisfy some property
UNION // union of two tables

SAMPLE // randomly sample each record with probability p
DISTINCT // remove duplicates

LIMIT // return a subset of n (not random)

See http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html

Lecture 12 : 590.02 Spring 13 9 Duke

UNITWVYERSIT Y

COGROUP

A = LOAD 'datal' AS (owner:chararray,pet:chararray);

DUMP A;
(Alice,turtle)
(Alice,goldfish)
(Alice,cat)
(Bob,dog)
(Bob,cat)

B = LOAD 'data2' AS (friendl:chararray,friend2:chararray);
DUMP B;

(Cindy,Alice)

(Mark,Alice)

(Paul,Bob)

(Paul,Jane)

X = COGROUP A BY owner, B BY friend2;

(Alice, {(Alice,turtle), (Alice,goldfish), (Alice,cat)},{(Cindy,Alice), (Mark,Alice)})
(Bob, { (Bob,dog), (Bob,cat)}, {(Paul,Bob)})

(Jane, {}, {(Paul,Jane)})

Lecture 12 : 590.02 Spring 13 10 DUke

UNIVYERSITY

JOIN

A = LOAD 'datal’ AS (al:int,a2:int,a3:int);

DUMP A;

(1,2,3)

4,2,1

£8,3,4; X = JOIN A BY al, B BY bl;
(4,3,3)

(7,2,5)

(8,4,3) DUMP X;

B = LOAD 'data2' AS (bl:int,b2:int); (1'2'3’1'3)
B R (4,2,1,4,6)

DUMP B; (4,3,3,4,6)
2:;; (4,2,1,4,9)
(1,3) (4,3,3,4,9)
g';; (8,3,4,8,9)

(4,6) (8,4,3,8,9)

(4,9)

Lecture 12 : 590.02 Spring 13 11 DUke

UNIVYERSITY

JOIN PROCESSING

Lecture 12 : 590.02 Spring 13

IIIIIIIIII

JOINSs

* A=JOIN B BY fieldB, C BY fieldC PARALLEL 20

— Specify the number of reduce tasks

« A=JOIN B BY fieldB, C BY fieldC USING ‘replicated’

— Can ask the system to use one of three ways to do join.

Lecture 12 : 590.02 Spring 13 13 Duke

UNLVYVERSITX

Join Types

Fragment Replicated Join:
 When one of the tables is small enough to fit in memory.

I”

* Replicate the “small” table to all mappers containing the other

“large” table.
Skewed Join:
* When one of the join attributes is very skewed.
» Keys with large number of keys are split into multiple reducers.
Merge Join:
* When two datasets are already sorted on the join key
* Use sort merge join.

Lecture 12 : 590.02 Spring 13 14 Duke

UNITWVYERSIT Y

Join as an Optimization Problem

* Objective: minimize job completion time
* Cost at a reducer:

Join output -

Mapper output Reducer

/

Receive Mapper Sortinput Read Run join Sendgoin
output by key input algorithm outpu

time=f(input size) time=f(output size)
L >

-

* Input-size dominated: Reducer input processing time is large
e Qutput-size dominated: Reducer output processing time is large

Duke

Lecture 12 : 590.02 Spring 13
UNIYERSITY

O © 0O N N oW

Join-Matrix

M;; = pair of tuples that have S.key =i and T.key =]
M;; is shaded if corresponding tuples appear in the join output.

T85 7 7 7 8 9 T5 7 7 7 8 9

V

O ©O© 0O N N oW

M21) ga-T1A M29) abs(S.A-T.A)<?2

© © 00 N N oW

T5 7 7 7 8 9

SA>=TA

Goal: find a mapping between join matrix cells to reducers that

minimizes completion time.

Lecture 12 : 590.02 Spring 13

Duke

UNIVYERSITY

Join Alternatives

T5 7 7 7 8 9

W © 00 N N om

®

(N
\LJ

\[®

\\\ ®

\

\|
R1: keys 5,8

Input: S1,S4
T1,TS
Output: 2 tuples

R2: key 7
Input: S2,S3
T2,T3,T4
Output: 6 tuples

R3: key 9
Input: S5,S6
T6
Output: 2 tuples

max-reducer—input = 5
max-reducer—output = 6

Standard join algorithm

Group both tables by key, send all tuples
with the same key to a single reducer

Skew in 7 leads to skewed execution
times in reducers.

Duke

UNIVYERSITY

Join Alternatives

T5 7 7 7 8 9

3

© © 0 N N oW
w
N

@
O]

) Rl:keyl
Input: S2,S3,54,S6
T3,T4,T5,T6
Output: 4 tuples
R2: key 2
Input: S2,S3,S5
T2,T4,T6

Output: 3 tuples

R3: key 3
Input: S1,S2,S3
T1,T2,T3
Output: 3 tuples

max-reducer—input = 8
max-reducer—output = 4

Fine grained load balancing

— Divide the cells in the join matrix equally
amongst the reducers

Leads to replication of tuples to multiple
reducers

— S2, S3 are sent to all reducers.

Duke

UNIVYERSITY

Join Alternatives

T5 7 7 7 8 9

I%- Best of both worlds
! ‘ \&/

e 7 is broken down into two reducers

© © 00 N N Oowm

* Limits replication of input as well as

R1: key 1 reduces output skew.

Input: S1,S2,S3
T1,T2
Output: 3 tuples
R2: key 2
Input: S2,S3
T3,T4
Output: 4 tuples

R3: key 3
Input: S4,S5,S6

T5,T6
Output: 3 tuples D
max-reducer—input = 5 19 u e

max-reducer—output = 4 UNIVERSITY

Computing a join

|dentify the regions in the join matrix that appear in the join.
— Sufficient to identify a superset of the shaded cells in the join matrix

Map regions of the join matrix to reducers such that each shaded
cell is covered by a reducer.

Develop a Map-reduce algorithm to assign tuples to the
corresponding reducers.

Duke

Lecture 12 : 590.02 Spring 13
UNIVERSITY

Approach 1: Cross Product

e Cross Product: all cells in the join matrix are shaded
— Superset of any join condition

Lecture 12 : 590.02 Spring 13 21 DUke

UNIVYERSITY

Cross Product

How to cover the cross product by r reducers?
* Needto coverall |S| |T| cells using r reducers

— Max reducer output size >= |S||T|/r
— Therefore, Max reducer input size >= 2 sqrt(|S||T|/r)

 We can match these lower bounds by assigning square regions
from the join matrix of side = sqrt(|S| |T| / r) cells.
— |S| and |T| must be multiples of sqrt(|S| |T| /)

e Algorithms in the paper for optimal mapping to reducers for any
given |S|, |T|, r.

— At most 4 sqrt(|S| |T| / r) max reducer input and max reducer output.

Lecture 12 : 590.02 Spring 13 22 DUke

UNIVYERSITY

Col ., 5 3T 4 5 &

Join Algorithm ™
@ <)
e Assign row ids from {1, 2, ..., |S|} and g3 et
{1,2, ..., |T|}toallrowsinSandT, resp. 4
5 7B\
o [&
* Map phase: S.A=T.A

Forx eSS, letR={rl, .., rk} be the regions intersecting row x.id.
Generate tuples: one tuple (r,x) for each r € R
Similarly generate tuples fory € T.

 Reduce phase:
Perform the join (or cross product) of all the tuples input to the
reducer.

Lecture 12 : 590.02 Spring 13 23 Duke

UNIVYERSITY

Join Algorithm: 1-Bucket-Theta

* Problem: Need a new map step to assignidstorowsinSand T

* Instead, on seeing a new tuple in S or T, assign a random row id.

Map: Reduce:
Input Ranc}onp Output Reducer X: key 1
Col T tuple | row/co Input: S1, S3, S5 ,S6
Row 1 2 3 4 5 6 §i{A-5 3 |(1,51),251) T2, T3, T4
1 S2.A=7! 5 (3,52) Output: £S3,T2;,(SS,T3)
S3.A=7| 1 (1,53),(2,S3) S3,T4
2 1 5 S4.A=8| 5 (3,54) Reducer Y: key 2
3 S5.A=9| 1 (1,85),(2,85) | |Input: S1, S3, S5, S6
S S6.A=9| 2 (1,56),(2,56) 11,15, 76
4 T1.A=5 6 ((2,71),@3T1) | |QuPUt:RL.11.(S5.T6)
. T2.A=7 2 |(1,72).(3,T2) :
a T3.A=7 2 |(1,13),(3,73) | {Reducer Z: key 3
6 3 T4A=7| 3 ((1,T4),3T4) | |MPUt PR3
SA=TA T5.A=8 6 ((2,T5),(3,T5) T4, T5. T6
' ' T6.A=9 4 |(2,76),(3,T6) | |Output: (S2 T2),(S2,T3)

“puke

Lecture 12 : 590.02 Spring 13
UNIYERSITY

1-Bucket-Theta

Since every cell in the entire cross product is sent to some
reducer, any join algorithm can be implemented

— By applying the appropriate join condition.

If evaluating a join requires at least an x fraction of all cells in the
join matrix, then max reducer input >= 2 sqrt(x|S| | T|/r).

1-Bucket-Theta has max reducer input <=4 sqrt(|S| |T|/r)

Hence, at most a factor of 2/sqgrt(x) off
— Works well as long as x is large (at least 50%)

Lecture 12 : 590.02 Spring 13 25 Duke

UNITWVYERSIT Y

Approach 2: Approximate the Join Matrix

True join matrix Histogram boundaries

Candidate cells to be
covered by algorithm

Lecture 12 : 590.02 Spring 13 26 Duke

UNIVYERSITY

Approach 2

* Need more detailed statistics about |S| and |T|

 Need to know something about the join predicate
— Doesn’t work for black-box join operators
— Need to identify which blocks contain O cells that appear in the join

— Equijoins, band-joins, inequality joins ...

* Paper shows a heuristic technique to divide candidate cells into
reducers.

Lecture 12 : 590.02 Spring 13 27 Duke

UNITWVYERSIT Y

Summary

* High level languages help write complex programs without
thinking about map and reduce

* Join operations can be optimized by dividing the join matrix into
regions.

Duke

Lecture 12 : 590.02 Spring 13
UNIVERSITY

