Graph Algorithms & Iteration
on Map-Reduce

CompSci 590.03
Instructor: Ashwin Machanavajjhala

Lecture 13 : 590.02 Spring 13 1 DUke

UNIVYERSITY

Recap: Map-Reduce

map (k1,v1) — list(k2,v2);
reduce (k2,list(v2)) — list(k3,v3).

Map Phase Reduce Phase
(per record computation) (global computation)

uke

UNIVYERSITY

Lecture 13 : 590.02 Spring 13 2

Recap: Optimizing Joins

T577789$T5777898T577789

© © 00 N N Oowm

® 5 [G :
@ 7 231 7 1 3
7)] U] - 7 L N
N ; | s
\\\ 9 Ol
R1: keys 5,8 R1l:key 1 R1:key 1
Input: S1,S4 Input: S2,S3,54,S6 Input: S1,S2,S3
T1,T5 T3,T4,T5,T6 T1,T2
Output:2 tuples Output: 4 tuples Output: 3 tuples
R2: key 7 R2: key 2 R2: key 2
Input: S2,S3 Input: 52,83,S5 Input: S2,S3
T2,T3.T4 T2,T4,T6 T3,T4
Output: 6 tuples Output: 3 tuples Output:4 tuples
R3: key 9 R3: key 3 R3:key 3
Input: S5,S6 Input: S1,S2,S3 Input: S4.S5.S6
T6 T1,T2,T3 " IsTe
Output:2 tuples Output: 3 tuples Output: 3 tuples e
max—reducer—input = 5 max-reducer—input = 8 max-reducer—input=5 "¢ 1y

max-reducer—output = 6 max-reducer—output = 4 max—reducer—output = 4

This Class

* Graph Processing on Map Reduce

Lecture 13 : 590.02 Spring 13 4 DUke

UNIVYERSITY

GRAPH PROCESSING

Lecture 13 : 590.02 Spring 13

IIIIIIIIII

Graph Algorithms

Diameter Estimation
— Length of the longest shortest path in the graph

Connected Components

— Undirected s-t connectivity (USTCON): check whether two nodes are
connected.

PageRank

— Calculate importance of nodes in a graph

Random Walks with Restarts

— Similarity function that encodes proximity of nodes in a graph

Lecture 13 : 590.02 Spring 13 6 Duke

UNIVYERSITY

Connected Components

 What is an efficient algorithm for computing the connected
components in a graph?

Lecture 13 : 590.02 Spring 13 7 DUke

UNIVYERSITY

HCC [Kang et al ICDM ‘09]

Each node’s label I(v) is initialized to itself

In each iteration
l(v) = min {I(v), min . ciohw H(Y)}

O(d) iterations (d = diameter of the graph)
O(|V] + |E|) communication per iteration

Duke

UNIVYERSITY

GIM-V

* Generalized Iterative Matrix-Vector Multiplication

Connected Components
* Let c" denote the component-id of a vertex in iteration h

¢ cMl=Mx;ch
Ch+1[i] = min(ch+1[i], Cnew[i])

— c"¥[i] = miny(ml[i,j]x c"[j]) Step 2: Aggregate to find the
min for each node

Step 1: Generate m(j,j] x c[j]

« Keep iterating till c"*1 = ch.

Lecture 13 : 590.02 Spring 13 9 Duke

UNIVYERSITY

GIM-V and Page Rank
p=(cEY +(1—-c)U)p
pnext= MXG pcur

p"ei] = (1-c)/n + sum; (¢ x mi,j]x p«[j])

Lecture 13 : 590.02 Spring 13 10 DUke

UNIVYERSITY

GIM-V BL

* We assumed each edge in the graph is represented using a
different row.

e Can speed up processing if each row represents a bxb sub matrix

Vo V1 Va2
01 0o 1]0
B B
0,1 0,2 " " "
B o/1foY1]171 0 01 01 101
> \'
0,0 1 1 o(o0Q1 0 1 0 1 1 0|0 1 0
o|1fof1fo0]1 0 01 01 01
B1 o— X Vq= + +
olofJojof1]o0 0 0|0 0|0 1]0
o|/1fof1]0]1 1 0|1 0|1 0|1
B.o 1 V2
111010 0 11 11]0 100

Lecture 13 : 590.02 Spring 13 11 Duke

UNITWVYERSIT Y

Connected Components

Iterative Matrix Vector products need O(d) map reduce steps to
find the connected components in a graph.

Diameter of a graph can be large.
— > 20 for many real world graphs.

Each map reduce step requires writing data to disk + remotely
reading data from disk (I/O + communication)

Can we find connected components using a smaller number of
iterations?

Lecture 13 : 590.02 Spring 13 12 Duke

UNLVYVERSITX

Hash-to-all

Maintain a cluster at each node
— Current estimate of connected component

Initialize cluster(v) = Neighbors(v) U {v}

Each node sends its cluster to all nodes in the cluster
— Map: (v, C(v)) =2 {(u, C(v))} for all uin C(v)

Union all the clusters sent to a node v
— Reduce: (u, {C1,C2, ...,Ck}) 2 (u,C1UC2U.. UCk)

Lecture 13 : 590.02 Spring 13 13 Duke

UNITWVYERSIT Y

Hash-to-all

* Number of rounds =logd
— Proof?

« Communication per round = O(n|V| + | E|)
— Each node is replicated at most n times, where n is the maximum size of a
connected component.

Lecture 13 : 590.02 Spring 13 14 Duke

UNIVYERSITY

Hash-to-Min

Each node v maintains a cluster C(v) which is initialized to

{v} U Neighbors(v) e
In each iteration W ;

Map:
Vi = Min {C(v)}

Send C(v) to v,
Send v, . tonodes in C(v)

Reduce:
C(v) is the union of all incoming clusters

Duke

UNIVYERSITY

Hash-to-Min

Each node v maintains a cluster C(v) which is initialized to
{v} U Neighbors(v)

In each iteration

Map:
Vi = Min {C(v)}

Send (V) 10 Vi, v | v

Send v, to nodes in C(v)

1 1,2
2 1,2,3,4
Reduce: 3 23
C(v) is the union of all incoming clusters 4 G
5 4,5,6 .
6 5,6 ~e

UENIT¥YERSI T X

Hash-to-Min

Each node v maintains a cluster C(v) which is initialized to
{v} U Neighbors(v)

In each iteration

Map:
Vi = Min {C(v)}
Send C(v) to v,
Send v, to nodes in C(v)

Reduce:
C(v) is the union of all incoming clusters

1
2
3
4 1,4,5,6
5
6

UENIT¥YERSI T X

Hash-to-Min

Each node v maintains a cluster C(v) which is initialized to
{v} U Neighbors(v)

In each iteration

Map:
Vi = Min {C(v)}

Send (V) 10 Vi, v | v

Send v, to nodes in C(v)

1 1,2,3,4,5,6
2 1
Reduce: 3 .
C(v) is the union of all incoming clusters 4 .
5 1 .
6 N

UENIT¥YERSI T X

Hash-to-Min

In the end, cluster of vertex with minimum id contains the entire

connected component.
Cluster of other vertices in the component is a singleton having

the minimum vertex.

Communication cost: Assuming a random assignment of ids to
vertices, expected communication cost is O(k(|V| + |E])) in
iteration k

Number of iterations: ??7?
— On apath graph: 4 logn
— In a general graph: 4 log d (conjecture)

Duke

Lecture 13 : 590.02 Spring 13
UNIVERSITY

Leader Algorithm

* Letmtbe an arbitrary total order over the vertices.
e Begin with I(v) = v, and all nodes active

In each iteration:

 Let C(v) be the connected component containing v
e Let(v) be the neighbors of C(v) that are not in C(v)
e C(Call each active node a leader with probability %.

* For each active non-leader w, find w* = min(l'(w))

* If w*is notempty and I(w*) is a leader,
then mark w as passive, and
relabel each node with label w by [(w*)

Duke

Lecture 13 : 590.02 Spring 13
UNIVERSITY

Correctness

If at any point of time two nodes s and t have the same label,
then they are connected in G.

Consider an iteration, when I(s) # I(t) before the iteration, but I(s)
= |(t) after.

This means, I(s) = w (non-leader node), I(t) = w*

By induction, s is connected to all nodes in I'(w),
t is connected to all nodes in I'(w*), and

w is connected to w*.
Therefore, s and t are connected.

Lecture 13 : 590.02 Spring 13 21 Duke

UNITWVYERSIT Y

Number of Iterations

Every connected component has a unique label after O(log N)
rounds with high probability

Suppose there is some connected component with two active
labels.

An active label w survives an iteration if:
1. w is marked a leader
2. w is not marked a leader and |(w*) is not marked a leader

Hence, in every iteration, the expected number of active labels
reduces by %.

Lecture 13 : 590.02 Spring 13 22 Duke

UNLVYVERSITX

Summary

* No native support for iteration in Map-Reduce
— Each iteration writes/reads data from disk leading to overheads

 Many graph algorithms need iterative computation
— Need to design algorithms that can minimize number of iterations

Lecture 13 : 590.02 Spring 13 23 Duke

UNLVYVERSITX

Hash-Greater-to-Min

e Each vertex v maintains:
V... - minimum node
C(v) : cluster

* Run Hcc 2 times ...
Map: send v, .. to neighbors
Reduce: Compute new v .. and add it to C(v)

* Run Greater to min step once ...
Map: Let C._, be all nodes in C(v) that have id >=v
Send v, in to all nodesin C,_,
Send C,_,tov,
Reduce: Union the incoming clusters.

Lecture 13 : 590.02 Spring 13 24 Duke

UNLVYVERSITX

Hash-Greater-to-Min

* Theorem: The algorithm completes in expectation 3 log n steps

(over random node orderings), where n is the size of the largest
component.

 Lemma: Let GT(v) be the set of nodes where v is the minimum

node (after a greater-to-min step). Then GT(v) = set of nodes in
C(v) that have ids >=v.

Lecture 13 : 590.02 Spring 13 25 Duke

UNIVYERSITY

Proof of Theorem

After 3K rounds, let Mk be the nodes that appear as minimum on
some nodes.

GTk(m) = set of nodes where m is the minimum
GTk(m) is disjoint from GTk(m’) for all m and m’.

Construct a graph G, with vertices from Mk, and (m,m’) is an
edge if there exist vin GTk(m) and v’ in GTk(m’) such that (v,V’) is
an edge in the original graph.

Lecture 13 : 590.02 Spring 13 26 Duke

UNITWVYERSIT Y

Proof of Theorem

* Consider a connected component in GMk (and let | Mk| =s)

* If m<m’ are connected in GMk, then m’ will no longer be a
minimum node after 3 rounds:
— There exist vin GTk(m) and v’ in GTk(m’) that are neighbors in G
— In one step of Hece, vsend m to v/
— In second step of Hcc, vV sends m’ tom

Lecture 13 : 590.02 Spring 13 27 Duke

UNIVYERSITY

