Graph Algorithms & Iteration
on Map-Reduce

CompSci 590.03
Instructor: Ashwin Machanavajjhala
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Recap: Map-Reduce

map (k1,v1) — list(k2,v2);
reduce (k2,list(v2)) — list(k3,v3).

Map Phase Reduce Phase
(per record computation) (global computation)
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Recap: Optimizing Joins
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R1: keys 5,8 R1l:key 1 R1:key 1
Input: S1,S4 Input: S2,S3,54,S6 Input: S1,S2,S3
T1,T5 T3,T4,T5,T6 T1,T2
Output:2 tuples Output: 4 tuples Output: 3 tuples
R2: key 7 R2: key 2 R2: key 2
Input: S2,S3 Input: 52,83,S5 Input: S2,S3
T2,T3.T4 T2,T4,T6 T3,T4
Output: 6 tuples Output: 3 tuples Output:4 tuples
R3: key 9 R3: key 3 R3:key 3
Input: S5,S6 Input: S1,S2,S3 Input: S4.S5.S6
T6 T1,T2,T3 " IsTe
Output:2 tuples Output: 3 tuples Output: 3 tuples e
max—reducer—input = 5 max-reducer—input = 8 max-reducer—input=5 "¢ 1y

max-reducer—output = 6 max-reducer—output = 4 max—reducer—output = 4



This Class

* Graph Processing on Map Reduce
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GRAPH PROCESSING

Lecture 13 : 590.02 Spring 13

IIIIIIIIII



Graph Algorithms

Diameter Estimation
— Length of the longest shortest path in the graph

Connected Components

— Undirected s-t connectivity (USTCON): check whether two nodes are
connected.

PageRank

— Calculate importance of nodes in a graph

Random Walks with Restarts

— Similarity function that encodes proximity of nodes in a graph
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Connected Components

 What is an efficient algorithm for computing the connected
components in a graph?
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HCC [Kang et al ICDM ‘09]

Each node’s label I(v) is initialized to itself

In each iteration
l(v) = min {I(v), min . ciohw H(Y)}

O(d) iterations (d = diameter of the graph)
O(|V] + |E|) communication per iteration
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GIM-V

* Generalized Iterative Matrix-Vector Multiplication

Connected Components
* Let c" denote the component-id of a vertex in iteration h

¢ cMl=Mx;ch
Ch+1[i] = min(ch+1[i], Cnew[i])

— c"¥[i] = miny(ml[i,j]x c"[j]) Step 2: Aggregate to find the
min for each node

Step 1: Generate m(j,j] x c[j]

« Keep iterating till c"*1 = ch.
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GIM-V and Page Rank
p=(cEY +(1—-c)U)p
pnext= MXG pcur

p"ei] = (1-c)/n + sum; (¢ x mi,j]x p«[j])
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GIM-V BL

* We assumed each edge in the graph is represented using a
different row.

e Can speed up processing if each row represents a bxb sub matrix

Vo V1 Va2
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0,1 0,2 " " "
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o|1fof1fo0]1 0 01 01 01
B1 o— X Vq= + +
olofJojof1]o0 0 0|0 0|0 1]0
o|/1fof1]0]1 1 0|1 0|1 0|1
B.o 1 V2
111010 0 11 11]0 100
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Connected Components

Iterative Matrix Vector products need O(d) map reduce steps to
find the connected components in a graph.

Diameter of a graph can be large.
— > 20 for many real world graphs.

Each map reduce step requires writing data to disk + remotely
reading data from disk (I/O + communication)

Can we find connected components using a smaller number of
iterations?
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Hash-to-all

Maintain a cluster at each node
— Current estimate of connected component

Initialize cluster(v) = Neighbors(v) U {v}

Each node sends its cluster to all nodes in the cluster
— Map: (v, C(v)) =2 {(u, C(v))} for all uin C(v)

Union all the clusters sent to a node v
— Reduce: (u, {C1,C2, ...,Ck}) 2 (u,C1UC2U.. UCk)
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Hash-to-all

* Number of rounds =logd
— Proof?

« Communication per round = O(n|V| + | E|)
— Each node is replicated at most n times, where n is the maximum size of a
connected component.
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Hash-to-Min

Each node v maintains a cluster C(v) which is initialized to

{v} U Neighbors(v) e
In each iteration W ;

Map:
Vi = Min {C(v)}

Send C(v) to v,
Send v, . tonodes in C(v)

Reduce:
C(v) is the union of all incoming clusters
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Hash-to-Min

Each node v maintains a cluster C(v) which is initialized to
{v} U Neighbors(v)

In each iteration

Map:
Vi = Min {C(v)}

Send (V) 10 Vi, v | v

Send v, to nodes in C(v)

1 1,2
2 1,2,3,4
Reduce: 3 23
C(v) is the union of all incoming clusters 4 G
5 4,5,6 .
6 5,6 ~e
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Hash-to-Min

Each node v maintains a cluster C(v) which is initialized to
{v} U Neighbors(v)

In each iteration

Map:
Vi = Min {C(v)}
Send C(v) to v,
Send v, to nodes in C(v)

Reduce:
C(v) is the union of all incoming clusters

1
2
3
4 1,4,5,6
5
6
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Hash-to-Min

Each node v maintains a cluster C(v) which is initialized to
{v} U Neighbors(v)

In each iteration

Map:
Vi = Min {C(v)}

Send (V) 10 Vi, v | v

Send v, to nodes in C(v)

1 1,2,3,4,5,6
2 1
Reduce: 3 .
C(v) is the union of all incoming clusters 4 .
5 1 .
6 N
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Hash-to-Min

In the end, cluster of vertex with minimum id contains the entire

connected component.
Cluster of other vertices in the component is a singleton having

the minimum vertex.

Communication cost: Assuming a random assignment of ids to
vertices, expected communication cost is O(k(|V| + |E])) in
iteration k

Number of iterations: ??7?
— On apath graph: 4 logn
— In a general graph: 4 log d (conjecture)
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Leader Algorithm

* Letmtbe an arbitrary total order over the vertices.
e Begin with I(v) = v, and all nodes active

In each iteration:

 Let C(v) be the connected component containing v
e Let(v) be the neighbors of C(v) that are not in C(v)
e C(Call each active node a leader with probability %.

* For each active non-leader w, find w* = min(l'(w))

* If w*is notempty and I(w*) is a leader,
then mark w as passive, and
relabel each node with label w by [(w*)

Duke
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Correctness

If at any point of time two nodes s and t have the same label,
then they are connected in G.

Consider an iteration, when I(s) # I(t) before the iteration, but I(s)
= |(t) after.

This means, I(s) = w (non-leader node), I(t) = w*

By induction, s is connected to all nodes in I'(w),
t is connected to all nodes in I'(w*), and

w is connected to w*.
Therefore, s and t are connected.
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Number of Iterations

Every connected component has a unique label after O(log N)
rounds with high probability

Suppose there is some connected component with two active
labels.

An active label w survives an iteration if:
1. w is marked a leader
2. w is not marked a leader and |(w*) is not marked a leader

Hence, in every iteration, the expected number of active labels
reduces by %.
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Summary

* No native support for iteration in Map-Reduce
— Each iteration writes/reads data from disk leading to overheads

 Many graph algorithms need iterative computation
— Need to design algorithms that can minimize number of iterations
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Hash-Greater-to-Min

e Each vertex v maintains:
V... - minimum node
C(v) : cluster

* Run Hcc 2 times ...
Map: send v, .. to neighbors
Reduce: Compute new v .. and add it to C(v)

* Run Greater to min step once ...
Map: Let C._, be all nodes in C(v) that have id >=v
Send v, in to all nodesin C,_,
Send C,_,tov,
Reduce: Union the incoming clusters.
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Hash-Greater-to-Min

* Theorem: The algorithm completes in expectation 3 log n steps

(over random node orderings), where n is the size of the largest
component.

 Lemma: Let GT(v) be the set of nodes where v is the minimum

node (after a greater-to-min step). Then GT(v) = set of nodes in
C(v) that have ids >=v.
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Proof of Theorem

After 3K rounds, let Mk be the nodes that appear as minimum on
some nodes.

GTk(m) = set of nodes where m is the minimum
GTk(m) is disjoint from GTk(m’) for all m and m’.

Construct a graph G, with vertices from Mk, and (m,m’) is an
edge if there exist vin GTk(m) and v’ in GTk(m’) such that (v,V’) is
an edge in the original graph.
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Proof of Theorem

* Consider a connected component in GMk (and let | Mk| =s)

* If m<m’ are connected in GMk, then m’ will no longer be a
minimum node after 3 rounds:
— There exist vin GTk(m) and v’ in GTk(m’) that are neighbors in G
— In one step of Hece, vsend m to v/
— In second step of Hcc, vV sends m’ tom
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