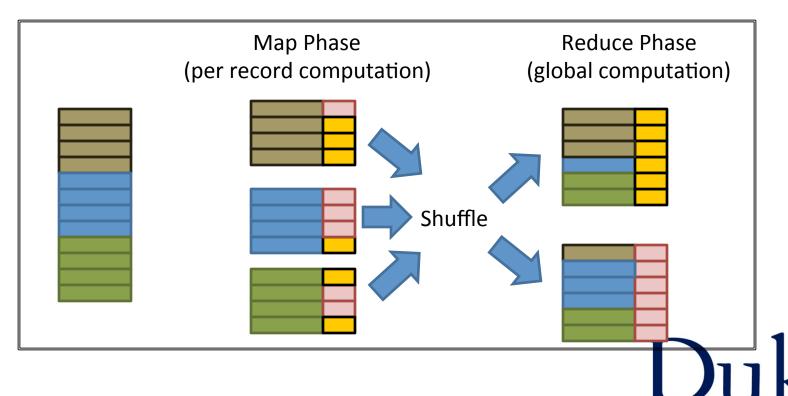
Graph Algorithms & Iteration on Map-Reduce

CompSci 590.03 Instructor: Ashwin Machanavajjhala

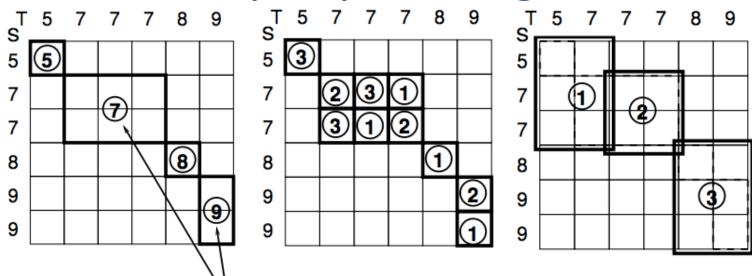
Recap: Map-Reduce

```
map (k1,v1) \rightarrow list(k2,v2);
reduce (k2,list(v2)) \rightarrow list(k3,v3).
```



Lecture 13: 590.02 Spring 13

Recap: Optimizing Joins



R1: keys 5,8

Input: S1,S4

T1,T5

key

Output: 2 tuples

R2: key 7

Input: S2,S3

T2,T3,T4

Output: 6 tuples

R3: key 9

Input: S5,S6

T6

Output: 2 tuples

max-reducer-input = 5 max-reducer-output = 6 R1: key 1

Input: S2,S3,S4,S6

T3,T4,T5,T6

Output: 4 tuples

R2: key 2

Input: \$2,\$3,\$5

T2,T4,T6

Output: 3 tuples

R3: key 3

Input: S1,S2,S3

T1,T2,T3

Output: 3 tuples

max-reducer-input = 8 max-reducer-output = 4 R1: key 1

Input: S1,S2,S3

T1,T2

Output: 3 tuples

R2: key 2

Input: S2,S3

T3,T4

Output: 4 tuples

R3: key 3

Input: \$4,\$5,\$6

T5,T6

Output: 3 tuples

max-reducer-input = 5 max-reducer-output = 4

This Class

Graph Processing on Map Reduce

Lecture 13: 590.02 Spring 13

GRAPH PROCESSING

Graph Algorithms

- Diameter Estimation
 - Length of the longest shortest path in the graph
- Connected Components
 - Undirected s-t connectivity (USTCON): check whether two nodes are connected.
- PageRank
 - Calculate importance of nodes in a graph
- Random Walks with Restarts
 - Similarity function that encodes proximity of nodes in a graph

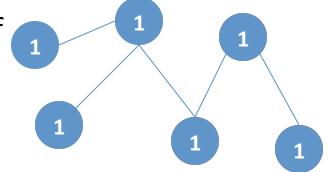
Connected Components

 What is an efficient algorithm for computing the connected components in a graph?

Lecture 13: 590.02 Spring 13

HCC [Kang et al ICDM '09]

- Each node's label I(v) is initialized to itself
- In each iteration
 I(v) = min {I(v), min _{y ε neigh(v)} I(y)}



O(d) iterations (d = diameter of the graph)
 O(|V| + |E|) communication per iteration

GIM-V

Generalized Iterative Matrix-Vector Multiplication

Connected Components

- Let c^h denote the component-id of a vertex in iteration h
- $c^{h+1} = M x_G c^h$
 - $c^{h+1}[i] = min(c^{h+1}[i], c^{new}[i])$
 - $c^{\text{new}}[i] = \min_{j}(m[i,j]x c^{h}[j])$
- Keep iterating till $c^{h+1} = c^h$.

Step 1: Generate m[j,j] x c[j]
Step 2: Aggregate to find the
min for each node

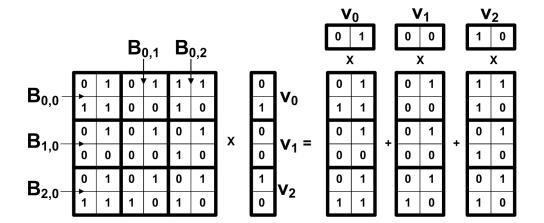
GIM-V and Page Rank

$$p = (cE^T + (1-c)U)p$$

- $p^{next} = M x_G p^{cur}$
- $p^{next}[i] = (1-c)/n + sum_j (c x m[i,j]x p^{cur}[j])$

GIM-V BL

- We assumed each edge in the graph is represented using a different row.
- Can speed up processing if each row represents a bxb sub matrix



Connected Components

- Iterative Matrix Vector products need O(d) map reduce steps to find the connected components in a graph.
- Diameter of a graph can be large.
 - > 20 for many real world graphs.
- Each map reduce step requires writing data to disk + remotely reading data from disk (I/O + communication)
- Can we find connected components using a smaller number of iterations?

Hash-to-all

- Maintain a cluster at each node
 - Current estimate of connected component
- Initialize cluster(v) = Neighbors(v) U {v}
- Each node sends its cluster to all nodes in the cluster
 - Map: $(v, C(v)) \rightarrow \{(u, C(v))\}$ for all u in C(v)
- Union all the clusters sent to a node v
 - Reduce: (u, {C1, C2, ..., Ck}) → (u, C1 U C2 U ... U Ck)

Hash-to-all

- Number of rounds = log d
 - Proof?

- Communication per round = O(n|V| + |E|)
 - Each node is replicated at most n times, where n is the maximum size of a connected component.

• Each node v maintains a cluster C(v) which is initialized to

{v} U Neighbors(v)

In each iteration

Map:

 $v_{min} = min \{C(v)\}$ Send C(v) to v_{min} Send v_{min} to nodes in C(v)

Reduce:

C(v) is the union of all incoming clusters

 Each node v maintains a cluster C(v) which is initialized to {v} U Neighbors(v)

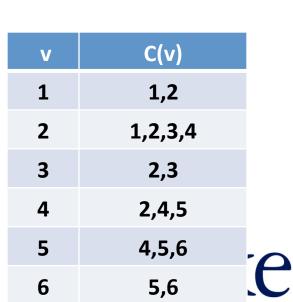
In each iteration

Map:

 $v_{min} = min \{C(v)\}$ Send C(v) to v_{min} Send v_{min} to nodes in C(v)

Reduce:

C(v) is the union of all incoming clusters



 Each node v maintains a cluster C(v) which is initialized to {v} U Neighbors(v)

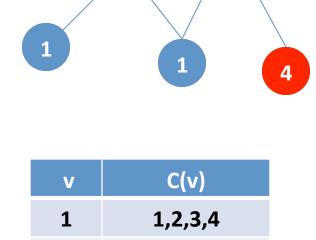
In each iteration

Map:

 $v_{min} = min \{C(v)\}$ Send C(v) to v_{min} Send v_{min} to nodes in C(v)

Reduce:

C(v) is the union of all incoming clusters



1,2,3,4,5

1,4,5,6

2

3

4

5

 Each node v maintains a cluster C(v) which is initialized to {v} U Neighbors(v)

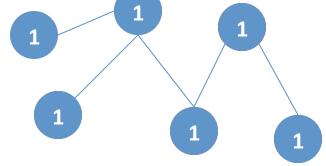
In each iteration

Map:

 $v_{min} = min \{C(v)\}$ Send C(v) to v_{min} Send v_{min} to nodes in C(v)

Reduce:

C(v) is the union of all incoming clusters



V	C(v)
1	1,2,3,4,5,6
2	1
3	1
4	1
5	1
6	1
	UNIVERSIT

- In the end, cluster of vertex with minimum id contains the entire connected component.
 - Cluster of other vertices in the component is a singleton having the minimum vertex.
- Communication cost: Assuming a random assignment of ids to vertices, expected communication cost is O(k(|V| + |E|)) in iteration k
- Number of iterations: ???
 - On a path graph: 4 log n
 - In a general graph: 4 log d (conjecture)

Leader Algorithm

- Let π be an arbitrary total order over the vertices.
- Begin with I(v) = v, and all nodes active

In each iteration:

- Let C(v) be the connected component containing v
- Let Γ(v) be the neighbors of C(v) that are not in C(v)
- Call each active node a leader with probability ½.
- For each active non-leader w, find w* = min(Γ(w))
- If w* is not empty and I(w*) is a leader, then mark w as passive, and relabel each node with label w by I(w*)

Correctness

- If at any point of time two nodes s and t have the same label, then they are connected in G.
- Consider an iteration, when l(s) ≠ l(t) before the iteration, but l(s)
 = l(t) after.
- This means, l(s) = w (non-leader node), l(t) = w*
- By induction, s is connected to all nodes in Γ(w),
 t is connected to all nodes in Γ(w*), and
 w is connected to w*.
- Therefore, s and t are connected.

Number of Iterations

- Every connected component has a unique label after O(log N) rounds with high probability
- Suppose there is some connected component with two active labels.
- An active label w survives an iteration if:
 - 1. w is marked a leader
 - 2. w is not marked a leader and l(w*) is not marked a leader
- Hence, in every iteration, the expected number of active labels reduces by ¼.

Lecture 13: 590.02 Spring 13

Summary

- No native support for iteration in Map-Reduce
 - Each iteration writes/reads data from disk leading to overheads
- Many graph algorithms need iterative computation
 - Need to design algorithms that can minimize number of iterations

Hash-Greater-to-Min

Each vertex v maintains:

v_{min}: minimum node

C(v) : cluster

Run Hcc 2 times ...

Map: send v_{min} to neighbors

Reduce: Compute new v_{min} and add it to C(v)

Run Greater to min step once ...

Map: Let $C_{>=v}$ be all nodes in C(v) that have id >= vSend v_m in to all nodes in $C_{>=v}$

Send $C_{>=v}$ to v_{min}

Reduce: Union the incoming clusters.

Hash-Greater-to-Min

- Theorem: The algorithm completes in expectation 3 log n steps (over random node orderings), where n is the size of the largest component.
- Lemma: Let GT(v) be the set of nodes where v is the minimum node (after a greater-to-min step). Then GT(v) = set of nodes in C(v) that have ids >= v.

Proof of Theorem

- After 3K rounds, let Mk be the nodes that appear as minimum on some nodes.
- GTk(m) = set of nodes where m is the minimum
- GTk(m) is disjoint from GTk(m') for all m and m'.
- Construct a graph G_{Mk} , with vertices from Mk, and (m,m') is an edge if there exist v in GTk(m) and v' in GTk(m') such that (v,v') is an edge in the original graph.

Proof of Theorem

- Consider a connected component in GMk (and let | Mk | = s)
- If m < m' are connected in GMk, then m' will no longer be a minimum node after 3 rounds:
 - There exist v in GTk(m) and v' in GTk(m') that are neighbors in G
 - In one step of Hcc, v send m to v'
 - In second step of Hcc, v' sends m' to m

