
Graph	 Processing	 &	 	
Bulk	 Synchronous	 Parallel	 Model	

CompSci	 590.03	
Instructor:	 Ashwin	 Machanavajjhala	

1	 Lecture	 14	 :	 590.02	 Spring	 13	

Recap:	 Graph	 Algorithms	
•  Many	 graph	 algorithms	 need	 iteraFve	 computaFon	

•  No	 naFve	 support	 for	 iteraFon	 in	 Map-‐Reduce	
–  Each	 iteraFon	 writes/reads	 data	 from	 disk	 leading	 to	 overheads	
–  Need	 to	 design	 algorithms	 that	 can	 minimize	 number	 of	 iteraFons	

Lecture	 14	 :	 590.02	 Spring	 13	 2	

This	 Class	
•  IteraFon	 Aware	 Map-‐Reduce	

•  Pregel	 (Bulk	 Synchronous	 Parallel	 Model)	 for	 Graph	 Processing	

Lecture	 14	 :	 590.02	 Spring	 13	 3	

ITERATION	 AWARE	 MAP-‐REDUCE	

Lecture	 13	 :	 590.02	 Spring	 13	 4	

IteraFve	 ComputaFons	
	 PageRank:	 	
	 	 	 	 	 	 	 do	

	 pnext	 =	 (cM	 +	 (1-‐c)	 U)pcur	
	 	 	 	 	 	 	 while(pnext	 !=	 pcur)	
	
	
•  Loops	 are	 not	 supported	 in	 Map-‐Reduce	

–  Need	 to	 encode	 iteraFon	 in	 the	 launching	 script	
•  M	 is	 a	 loop	 invariant.	 But	 needs	 to	 wriZen	 to	 disk	 and	 read	 from	

disk	 in	 every	 step.	 	
•  M	 may	 not	 be	 co-‐located	 with	 mappers	 and	 reducers	 running	 the	

iteraFve	 computaFon.	
	

Lecture	 13	 :	 590.02	 Spring	 13	 5	

HaLoop	
•  IteraFve	 Programs	

Lecture	 13	 :	 590.02	 Spring	 13	 6	

Task Queue

.

.

.

Task21 Task22 Task23

Task31 Task32 Task33

Task11 Task12 Task13
�

�

�

Identical to Hadoop New in HaLoop

Local communication Remote communication

Modified from Hadoop

Figure 3: The HaLoop framework, a variant of Hadoop
MapReduce framework.

1, job 2, and job 3. Each job has three tasks running concurrently
on slave nodes.

In order to accommodate the requirements of iterative data anal-
ysis applications, we made several changes to the basic Hadoop
MapReduce framework. First, HaLoop exposes a new application
programming interface to users that simplifies the expression of
iterative MapReduce programs (Section 2.2). Second, HaLoop’s
master node contains a new loop control module that repeatedly
starts new map-reduce steps that compose the loop body, until
a user-specified stopping condition is met (Section 2.2). Third,
HaLoop uses a new task scheduler for iterative applications that
leverages data locality in these applications (Section 3). Fourth,
HaLoop caches and indexes application data on slave nodes (Sec-
tion 4). As shown in Figure 3, HaLoop relies on the same file
system and has the same task queue structure as Hadoop, but the
task scheduler and task tracker modules are modified, and the loop
control, caching, and indexing modules are new. The task tracker
not only manages task execution, but also manages caches and in-
dices on the slave node, and redirects each task’s cache and index
accesses to local file system.

2.2 Programming Model
The PageRank and descendant query examples are representative

of the types of iterative programs that HaLoop supports. Here, we
present the general form of the recursive programs we support and
a detailed API.

The iterative programs that HaLoop supports can be distilled into
the following core construct:

R
i+1

= R
0

[(R
i

./ L)

where R
0

is an initial result and L is an invariant relation. A
program in this form terminates when a fixpoint is reached —
when the result does not change from one iteration to the next, i.e.
R

i+1

= R
i

. This formulation is sufficient to express a broad class
of recursive programs.1

1SQL (ANSI SQL 2003, ISO/IEC 9075-2:2003) queries using the
WITH clause can also express a variety of iterative applications, in-
cluding complex analytics that are not typically implemented in
SQL such as k-means and PageRank; see Section 9.5.

A fixpoint is typically defined by exact equality between iter-
ations, but HaLoop also supports the concept of an approximate
fixpoint, where the computation terminates when either the differ-
ence between two consecutive iterations is less than a user-specified
threshold, or the maximum number of iterations has been reached.
Both kinds of approximate fixpoints are useful for expressing con-
vergence conditions in machine learning and complex analytics.
For example, for PageRank, it is common to either use a user-
specified convergence threshold ✏ [15] or a fixed number of iter-
ations as the loop termination condition.

Although our recursive formulation describes the class of iter-
ative programs we intend to support, this work does not develop
a high-level declarative language for expressing recursive queries.
Rather, we focus on providing an efficient foundation API for it-
erative MapReduce programs; we posit that a variety of high-level
languages (e.g., Datalog) could be implemented on this foundation.

To write a HaLoop program, a programmer specifies the loop
body (as one or more map-reduce pairs) and optionally specifies
a termination condition and loop-invariant data. We now discuss
HaLoop’s API (see Figure 16 in the appendix for a summary). Map
and Reduce are similar to standard MapReduce and are required;
the rest of the API is new and is optional.

To specify the loop body, the programmer constructs a multi-step
MapReduce job, using the following functions:

• Map transforms an input hkey, valuei tuple into intermediate
hin key, in valuei tuples.

• Reduce processes intermediate tuples sharing the same in key,
to produce hout key, out valuei tuples. The interface contains
a new parameter for cached invariant values associated with the
in key.

• AddMap and AddReduce express a loop body that consists of
more than one MapReduce step. AddMap (AddReduce) asso-
ciates a Map (Reduce) function with an integer indicating the
order of the step.

HaLoop defaults to testing for equality from one iteration to the
next to determine when to terminate the computation. To specify an
approximate fixpoint termination condition, the programmer uses
the following functions.

• SetFixedPointThreshold sets a bound on the distance be-
tween one iteration and the next. If the threshold is exceeded,
then the approximate fixpoint has not yet been reached, and the
computation continues.

• The ResultDistance function calculates the distance between
two out value sets sharing the same out key. One out value set v

i

is from the reducer output of the current iteration, and the other
out value set v

i�1

is from the previous iteration’s reducer output.
The distance between the reducer outputs of the current iteration
i and the last iteration i � 1 is the sum of ResultDistance on
every key. (It is straightforward to support additional aggrega-
tions besides sum.)

• SetMaxNumOfIterations provides further control of the loop
termination condition. HaLoop terminates a job if the maxi-
mum number of iterations has been executed, regardless of the
distance between the current and previous iteration’s outputs.
SetMaxNumOfIterations can also be used to implement a
simple for-loop.

To specify and control inputs, the programmer uses:

• SetIterationInput associates an input source with a specific
iteration, since the input files to different iterations may be dif-
ferent. For example, in Example 1, at each iteration i + 1, the
input is R

i

[L.

IniFal	
RelaFon	

Invariant	
RelaFon	

Loop	 aware	 task	 scheduling	 MapReduce

Stop?

Map Reduce Map Reduce

Application
Yes

No

Map function

Reduce function

Stop condition

Job Job

HaLoop

Stop?

Map Reduce Map Reduce

No

Application
Map function

Reduce function

Stop condition

Yes

Job

submit

Figure 4: Boundary between an iterative application and the
framework (HaLoop vs. Hadoop). HaLoop knows and controls
the loop, while Hadoop only knows jobs with one map-reduce
pair.

n3

n1

n2

n1

n2

n3

M20: R0-split0

M00: L-split0

M10: L-split1

R00: partition 0

R10: partition 1

R20: partition 2

n3

n1

n2

n1

n2

n3

M21: R1-split0

M01: L-split0

M11: L-split1

R01: partition 0

R11: partition 1

R21: partition 2

Unnecessary computation Unnecessary communication

Figure 5: A schedule exhibiting inter-iteration locality. Tasks
processing the same inputs on consecutive iterations are sched-
uled to the same physical nodes.

• AddStepInput associates an additional input source with an in-
termediate map-reduce pair in the loop body. The output of pre-
ceding map-reduce pair is always in the input of the next map-
reduce pair.

• AddInvariantTable specifies an input table (an HDFS file)
that is loop-invariant. During job execution, HaLoop will cache
this table on cluster nodes.

This programming interface is sufficient to express a variety of
iterative applications. The appendix sketches the implementation
of PageRank (Section 9.2), descendant query (Section 9.3), and k-
means (Section 9.4) using this programming interface. Figure 4
shows the difference between HaLoop and Hadoop, from the appli-
cation’s perspective: in HaLoop, a user program specifies loop set-
tings and the framework controls the loop execution, but in Hadoop,
it is the application’s responsibility to control the loops.

3. LOOP-AWARE TASK SCHEDULING
This section introduces the HaLoop task scheduler. The sched-

uler provides potentially better schedules for iterative programs
than Hadoop’s scheduler. Sections 3.1 and 3.2 illustrate the desired
schedules and scheduling algorithm respectively.

3.1 Inter-Iteration Locality
The high-level goal of HaLoop’s scheduler is to place on the

same physical machines those map and reduce tasks that occur in
different iterations but access the same data. With this approach,
data can more easily be cached and re-used between iterations. For
example, Figure 5 is a sample schedule for the join step (MR

1

in
Figure 1(c)) of the PageRank application from Example 1. There
are two iterations and three slave nodes involved in the job.

The scheduling of iteration 1 is no different than in Hadoop. In
the join step of the first iteration, the input tables are L and R

0

.
Three map tasks are executed, each of which loads a part of one or
the other input data file (a.k.a., a file split). As in ordinary Hadoop,
the mapper output key (the join attribute in this example) is hashed
to determine the reduce task to which it should be assigned. Then,

three reduce tasks are executed, each of which loads a partition of
the collective mapper output. In Figure 5, reducer R

00

processes
mapper output keys whose hash value is 0, reducer R

10

processes
keys with hash value 1, and reducer R

20

processes keys with hash
value 2.

The scheduling of the join step of iteration 2 can take advantage
of inter-iteration locality: the task (either mapper or reducer) that
processes a specific data partition D is scheduled on the physical
node where D was processed in iteration 1. Note that the two file
inputs to the join step in iteration 2 are L and R

1

.
The schedule in Figure 5 provides the feasibility to reuse loop-

invariant data from past iterations. Because L is loop-invariant,
mappers M

01

and M
11

would compute identical results to M
00

and M
10

. There is no need to re-compute these mapper outputs,
nor to communicate them to the reducers. In iteration 1, if reducer
input partitions 0, 1, and 2 are stored on nodes n

3

, n
1

, and n
2

respectively, then in iteration 2, L need not be loaded, processed
or shuffled again. In that case, in iteration 2, only one mapper
M

21

for R
1

-split0 needs to be launched, and thus the three reducers
will only copy intermediate data from M

21

. With this strategy, the
reducer input is no different, but it now comes from two sources:
the output of the mappers (as usual) and the local disk.

We refer to the property of the schedule in Figure 5 as inter-
iteration locality. Let d be a file split (mapper input partition) or a
reducer input partition2, and let T i

d

be a task consuming d in itera-
tion i. Then we say that a schedule exhibits inter-iteration locality
if for all i > 1, T i

d

and T i�1

d

are assigned to the same physical node
if T i�1

d

exists.
The goal of task scheduling in HaLoop is to achieve inter-

iteration locality. To achieve this goal, the only restriction is that
HaLoop requires that the number of reduce tasks should be invari-
ant across iterations, so that the hash function assigning mapper
outputs to reducer nodes remains unchanged.

3.2 Scheduling Algorithm
HaLoop’s scheduler keeps track of the data partitions processed

by each map and reduce task on each physical machine, and it uses
that information to schedule subsequent tasks taking inter-iteration
locality into account.

More specifically, the HaLoop scheduler works as follows. Upon
receiving a heartbeat from a slave node, the master node tries to
assign the slave node an unassigned task that uses data cached on
that node. To support this assignment, the master node maintains a
mapping from each slave node to the data partitions that this node
processed in the previous iteration. If the slave node already has a
full load, the master re-assigns its tasks to a nearby slave node.

Figure 6 gives pseudocode for the scheduling algorithm. Before
each iteration, previous is set to current, and then current is
set to a new empty HashMap object. In a job’s first iteration, the
schedule is exactly the same as that produced by Hadoop (line 2).
After scheduling, the master remembers the association between
data and node (lines 3 and 13). In later iterations, the scheduler
tries to retain previous data-node associations (lines 11 and 12). If
the associations can no longer hold due to the load, the master node
will associate the data with another node (lines 6–8).

4. CACHING AND INDEXING
Thanks to the inter-iteration locality offered by the task sched-

uler, access to a particular loop-invariant data partition is usually
2Mapper input partitions are represented by an input file URL plus
an offset and length; reducer input partitions are represented by an
integer hash value. Two partitions are assumed to be equal if their
representations are equal.

Lecture	 13	 :	 590.02	 Spring	 13	 7	

•  Inter-‐IteraFon	 Locality	
•  Caching	 and	 Indexing	 of	 invariant	 tables	

iMapReduce	
•  Reduce	 output	 is	 directly	 sent	 to	 mappers,	 instead	 of	 wriFng	 to	

distributed	 file	 system.	 	

•  Loop	 invariant	 is	 loaded	 onto	 the	 maps	 only	 once.	 	

Lecture	 14	 :	 590.02	 Spring	 13	 8	

In the prioritized example of Connected Components, we
let the nodes with larger component ids propagate their com-
ponent ids rather than letting all the nodes do the propaga-
tion together. In this way, the unnecessary propagation of
the small component ids is avoided since those small com-
ponent ids will probably be updated with larger ones in the
future. The prioritized Connected Components algorithm
can be described using the MapReduce programming model
as follows.

Map: For node v, send its component id c
v

to its neighbor-
ing node w.

Reduce: Select the maximum value among node w’s cur-
rent c

w

and all the received results by w, and update c
w

with the maximum value.

Priority: Node w is eligible for the next map operation only
if c

w

has changed since last map operation on w. Priority is
given to the node w with larger value of c

w

.

2.5 Other Algorithms
Prioritized iteration can be applied to many iterative algo-

rithms in the fields of machine learning [9], recommendation
systems [5] and link prediction [16]. The link prediction
problem aims to discover the hidden links or predict the
future links in complex networks such as online social net-
works or computer networks. The key challenge in link pre-
diction is to estimate the proximity measures between node
pairs. These proximity measures include (1) Katz metric
[15], which exploits the intuition that the more paths be-
tween two nodes and shorter these paths are, the closer the
two nodes are; (2) rooted PageRank [26], which captures the
probability for two nodes to run into each other by perform-
ing a random walk; (3) Expected Hitting Time [16], which
returns how long a source node takes (how many hops) to
reach a target on average. Similar to PageRank and Ad-
sorption, there is a common subproblem to compute:

1
X

k=1

dkW k, (7)

where W is a sparse nonnegative matrix. A broad class of al-
gorithms [16, 26] that have the closed form can be converted
to a selective incremental version, where the prioritized ex-
ecution will accelerate the iterative computation.

3. PRITER
In this section, we propose PrIter, a distributed framework

for prioritized iterative computations, which is implemented
based on Hadoop MapReduce [2]. First, we describe the
requirements of a framework that supports prioritized iter-
ative computations.

1. The framework needs to support iterative processing.
Iterative algorithms perform the same computation in
each iteration, and the state from the previous itera-
tion has to be passed to the next iteration e�ciently.

2. The framework needs to support state maintenance
across iterations. In MapReduce, only the previous it-
eration’s result is needed for the next iteration’s com-
putation, while in PrIter the intermediate iteration
state should be maintained across iterations due to the
selective update operations.

Map 1

Reduce 1

...

K V

Graph
Partition (1)

Map 2

Reduce 2
K V

Graph
Partition (2)

Map n

Reduce n
K V

Graph
Partition (n)

Shuffle

Figure 2: Iterative processing structure.

3. The framework needs to support prioritized execution.
That is, an e�cient selection of the high priority data
should be provided.

PrIter provides the functionalities of iterative processing
(Section 3.1), state maintenance (Section 3.2), prioritized
execution (Section 3.3), termination check (Section 3.4), and
online top-k query (Section 3.5). The framework has been
designed for scalable and fault-tolerant implementation on
clusters of thousands of commodity computers, so that the
load balancing and fault-tolerance mechanisms are provided
in PrIter (Section 3.6). Finally, we summarize PrIter’s APIs
and show a representative PageRank implementation exam-
ple in PrIter (Section 3.7).

3.1 Iterative Processing
PrIter incorporates the support of iMapReduce [32] for

iterative processing. Iterative process performs the same
operation in each iteration, and the output of the previ-
ous iteration is passed to the next iteration as the input.
iMapReduce following MapReduce paradigm directly passes
the reduce output to the map for the next iteration, rather
than writing output to distributed file system (DFS). Figure
2 shows the overall iterative processing structure.
We separate the data flow into two sub data flows accord-

ing to their variability features, including the static data
flow and the state data flow. The static data (e.g., the graph
structure) keeps unchanged over iterations, which is used in
the map function for exchanging information between neigh-
boring nodes. While the state data (e.g., the iterated short-
est distance or the PageRank score) is updated every itera-
tion, which indicates the node state. The static graph data
and the initial state data are partitioned and preloaded to
workers, and the framework will join the static data with
the state data before map operation.
Under the modified MapReduce framework, we can focus

on updating the state data through map and reduce func-
tions on the key-value pairs. Each key represents a node id,
and the associated value is the node state that is updated
every iteration (e.g., the PageRank score of a webpage). In
addition, each node has information that is static across it-
erations (e.g., the node linkage information), which is also
indexed by node ids (nid). A hash function F applying on
the keys/nodes is used to split the static graph data and the
initial node state data evenly into n partitions according to:

pid = F (nid, n), (8)

where pid is a partition id. These partitions are assigned to
di↵erent workers by the master. Each worker can hold one
or more partitions.

PREGEL	

Lecture	 14	 :	 590.02	 Spring	 13	 9	

Lecture	 14	 :	 590.02	 Spring	 13	 10	

Seven	 Bridges	 of	
Konigsberg	

River	 Pregel	

Pregel	 Overview	
•  Processing	 occurs	 in	 a	 series	 of	 supersteps	
	
•  In	 superstep	 S:	 	

Vertex	 may	 read	 messages	 sent	 to	 V	 in	 superstep	 S-‐1	
Vertex	 may	 perform	 some	 computaFon	
Vertex	 may	 send	 messages	 to	 other	 verFces	

•  Vertex	 computaFon	 within	 a	 superstep	 can	 be	 arbitrarily	
parallelized.	

•  All	 communicaFon	 happens	 between	 two	 supersteps	

Lecture	 14	 :	 590.02	 Spring	 13	 11	

Pregel	
•  Input:	 A	 directed	 graph	 G.	 	

Each	 vertex	 is	 associated	 with	 an	 id	 and	 a	 value.	 	
Edges	 may	 also	 contain	 values.	 	

•  Edges	 are	 not	 a	 first	 class	 ciFzen	 –	 they	 have	 no	 associated	
computaFon	
–  VerFces	 can	 modify	 its	 state/edge	 state/edge	 set	

•  ComputaFon	 finishes	 when	 	
all	 verFces	 enter	 the	 inacFve	 state	

Lecture	 14	 :	 590.02	 Spring	 13	 12	

and fault-tolerant platform with an API that is su�ciently
flexible to express arbitrary graph algorithms. This paper
describes the resulting system, called Pregel1, and reports
our experience with it.

The high-level organization of Pregel programs is inspired
by Valiant’s Bulk Synchronous Parallel model [45]. Pregel
computations consist of a sequence of iterations, called su-
persteps. During a superstep the framework invokes a user-
defined function for each vertex, conceptually in parallel.
The function specifies behavior at a single vertex V and a
single superstep S. It can read messages sent to V in su-
perstep S � 1, send messages to other vertices that will be
received at superstep S + 1, and modify the state of V and
its outgoing edges. Messages are typically sent along outgo-
ing edges, but a message may be sent to any vertex whose
identifier is known.

The vertex-centric approach is reminiscent of MapReduce
in that users focus on a local action, processing each item
independently, and the system composes these actions to lift
computation to a large dataset. By design the model is well
suited for distributed implementations: it doesn’t expose
any mechanism for detecting order of execution within a
superstep, and all communication is from superstep S to
superstep S + 1.

The synchronicity of this model makes it easier to reason
about program semantics when implementing algorithms,
and ensures that Pregel programs are inherently free of dead-
locks and data races common in asynchronous systems. In
principle the performance of Pregel programs should be com-
petitive with that of asynchronous systems given enough
parallel slack [28, 34]. Because typical graph computations
have many more vertices than machines, one should be able
to balance the machine loads so that the synchronization
between supersteps does not add excessive latency.

The rest of the paper is structured as follows. Section 2
describes the model. Section 3 describes its expression as
a C++ API. Section 4 discusses implementation issues, in-
cluding performance and fault tolerance. In Section 5 we
present several applications of this model to graph algorithm
problems, and in Section 6 we present performance results.
Finally, we discuss related work and future directions.

2. MODEL OF COMPUTATION
The input to a Pregel computation is a directed graph in

which each vertex is uniquely identified by a string vertex
identifier. Each vertex is associated with a modifiable, user
defined value. The directed edges are associated with their
source vertices, and each edge consists of a modifiable, user
defined value and a target vertex identifier.

A typical Pregel computation consists of input, when the
graph is initialized, followed by a sequence of supersteps sep-
arated by global synchronization points until the algorithm
terminates, and finishing with output.

Within each superstep the vertices compute in parallel,
each executing the same user-defined function that expresses
the logic of a given algorithm. A vertex can modify its state
or that of its outgoing edges, receive messages sent to it
in the previous superstep, send messages to other vertices
(to be received in the next superstep), or even mutate the

1The name honors Leonhard Euler. The Bridges of Königs-
berg, which inspired his famous theorem, spanned the Pregel
river.

Active Inactive

Vote to halt

Message received

Figure 1: Vertex State Machine

topology of the graph. Edges are not first-class citizens in
this model, having no associated computation.

Algorithm termination is based on every vertex voting to
halt. In superstep 0, every vertex is in the active state; all
active vertices participate in the computation of any given
superstep. A vertex deactivates itself by voting to halt. This
means that the vertex has no further work to do unless trig-
gered externally, and the Pregel framework will not execute
that vertex in subsequent supersteps unless it receives a mes-
sage. If reactivated by a message, a vertex must explicitly
deactivate itself again. The algorithm as a whole terminates
when all vertices are simultaneously inactive and there are
no messages in transit. This simple state machine is illus-
trated in Figure 1.

The output of a Pregel program is the set of values ex-
plicitly output by the vertices. It is often a directed graph
isomorphic to the input, but this is not a necessary prop-
erty of the system because vertices and edges can be added
and removed during computation. A clustering algorithm,
for example, might generate a small set of disconnected ver-
tices selected from a large graph. A graph mining algorithm
might simply output aggregated statistics mined from the
graph.

Figure 2 illustrates these concepts using a simple example:
given a strongly connected graph where each vertex contains
a value, it propagates the largest value to every vertex. In
each superstep, any vertex that has learned a larger value
from its messages sends it to all its neighbors. When no
further vertices change in a superstep, the algorithm termi-
nates.

We chose a pure message passing model, omitting remote
reads and other ways of emulating shared memory, for two
reasons. First, message passing is su�ciently expressive that
there is no need for remote reads. We have not found any
graph algorithms for which message passing is insu�cient.
Second, this choice is better for performance. In a cluster
environment, reading a value from a remote machine in-
curs high latency that can’t easily be hidden. Our message
passing model allows us to amortize latency by delivering
messages asynchronously in batches.

Graph algorithms can be written as a series of chained
MapReduce invocations [11, 30]. We chose a di↵erent model
for reasons of usability and performance. Pregel keeps ver-
tices and edges on the machine that performs computation,
and uses network transfers only for messages. MapReduce,
however, is essentially functional, so expressing a graph algo-
rithm as a chained MapReduce requires passing the entire
state of the graph from one stage to the next—in general
requiring much more communication and associated serial-
ization overhead. In addition, the need to coordinate the
steps of a chained MapReduce adds programming complex-
ity that is avoided by Pregel’s iteration over supersteps.

136

Example	
3 6 2 1

Superstep 0

6 6 2 6

Superstep 1

6 6 6 6

Superstep 2

6 6 6 6

Superstep 3

Figure 2: Maximum Value Example. Dotted lines

are messages. Shaded vertices have voted to halt.

3. THE C++ API
This section discusses the most important aspects of Pre-

gel’s C++ API, omitting relatively mechanical issues.
Writing a Pregel program involves subclassing the prede-

fined Vertex class (see Figure 3). Its template arguments
define three value types, associated with vertices, edges,
and messages. Each vertex has an associated value of the
specified type. This uniformity may seem restrictive, but
users can manage it by using flexible types like protocol
bu↵ers [42]. The edge and message types behave similarly.

The user overrides the virtual Compute() method, which
will be executed at each active vertex in every superstep.
Predefined Vertex methods allow Compute() to query infor-
mation about the current vertex and its edges, and to send
messages to other vertices. Compute() can inspect the value
associated with its vertex via GetValue() or modify it via
MutableValue(). It can inspect and modify the values of
out-edges using methods supplied by the out-edge iterator.
These state updates are visible immediately. Since their vis-
ibility is confined to the modified vertex, there are no data
races on concurrent value access from di↵erent vertices.

The values associated with the vertex and its edges are the
only per-vertex state that persists across supersteps. Lim-
iting the graph state managed by the framework to a single
value per vertex or edge simplifies the main computation
cycle, graph distribution, and failure recovery.

3.1 Message Passing
Vertices communicate directly with one another by send-

ing messages, each of which consists of a message value and
the name of the destination vertex. The type of the message
value is specified by the user as a template parameter of the
Vertex class.

A vertex can send any number of messages in a superstep.
All messages sent to vertex V in superstep S are available,
via an iterator, when V ’s Compute() method is called in
superstep S + 1. There is no guaranteed order of messages
in the iterator, but it is guaranteed that messages will be
delivered and that they will not be duplicated.

A common usage pattern is for a vertex V to iterate over
its outgoing edges, sending a message to the destination ver-
tex of each edge, as shown in the PageRank algorithm in
Figure 4 (Section 5.1 below). However, dest_vertex need

template <typename VertexValue,
typename EdgeValue,
typename MessageValue>

class Vertex {
public:
virtual void Compute(MessageIterator* msgs) = 0;

const string& vertex_id() const;
int64 superstep() const;

const VertexValue& GetValue();
VertexValue* MutableValue();
OutEdgeIterator GetOutEdgeIterator();

void SendMessageTo(const string& dest_vertex,
const MessageValue& message);

void VoteToHalt();
};

Figure 3: The Vertex API foundations.

not be a neighbor of V . A vertex could learn the identifier
of a non-neighbor from a message received earlier, or ver-
tex identifiers could be known implicitly. For example, the
graph could be a clique, with well-known vertex identifiers
V1 through Vn, in which case there may be no need to even
keep explicit edges in the graph.

When the destination vertex of any message does not ex-
ist, we execute user-defined handlers. A handler could, for
example, create the missing vertex or remove the dangling
edge from its source vertex.

3.2 Combiners
Sending a message, especially to a vertex on another ma-

chine, incurs some overhead. This can be reduced in some
cases with help from the user. For example, suppose that
Compute() receives integer messages and that only the sum
matters, as opposed to the individual values. In that case the
system can combine several messages intended for a vertex
V into a single message containing their sum, reducing the
number of messages that must be transmitted and bu↵ered.

Combiners are not enabled by default, because there is
no mechanical way to find a useful combining function that
is consistent with the semantics of the user’s Compute()

method. To enable this optimization the user subclasses
the Combiner class, overriding a virtual Combine() method.
There are no guarantees about which (if any) messages are
combined, the groupings presented to the combiner, or the
order of combining, so combiners should only be enabled for
commutative and associative operations.

For some algorithms, such as single-source shortest paths
(Section 5.2), we have observed more than a fourfold reduc-
tion in message tra�c by using combiners.

3.3 Aggregators
Pregel aggregators are a mechanism for global communica-

tion, monitoring, and data. Each vertex can provide a value
to an aggregator in superstep S, the system combines those
values using a reduction operator, and the resulting value
is made available to all vertices in superstep S + 1. Pregel
includes a number of predefined aggregators, such as min,
max, or sum operations on various integer or string types.

Aggregators can be used for statistics. For instance, a sum

aggregator applied to the out-degree of each vertex yields the

137

Lecture	 14	 :	 590.02	 Spring	 13	 13	

Vertex	 API	

3 6 2 1

Superstep 0

6 6 2 6

Superstep 1

6 6 6 6

Superstep 2

6 6 6 6

Superstep 3

Figure 2: Maximum Value Example. Dotted lines

are messages. Shaded vertices have voted to halt.

3. THE C++ API
This section discusses the most important aspects of Pre-

gel’s C++ API, omitting relatively mechanical issues.
Writing a Pregel program involves subclassing the prede-

fined Vertex class (see Figure 3). Its template arguments
define three value types, associated with vertices, edges,
and messages. Each vertex has an associated value of the
specified type. This uniformity may seem restrictive, but
users can manage it by using flexible types like protocol
bu↵ers [42]. The edge and message types behave similarly.

The user overrides the virtual Compute() method, which
will be executed at each active vertex in every superstep.
Predefined Vertex methods allow Compute() to query infor-
mation about the current vertex and its edges, and to send
messages to other vertices. Compute() can inspect the value
associated with its vertex via GetValue() or modify it via
MutableValue(). It can inspect and modify the values of
out-edges using methods supplied by the out-edge iterator.
These state updates are visible immediately. Since their vis-
ibility is confined to the modified vertex, there are no data
races on concurrent value access from di↵erent vertices.

The values associated with the vertex and its edges are the
only per-vertex state that persists across supersteps. Lim-
iting the graph state managed by the framework to a single
value per vertex or edge simplifies the main computation
cycle, graph distribution, and failure recovery.

3.1 Message Passing
Vertices communicate directly with one another by send-

ing messages, each of which consists of a message value and
the name of the destination vertex. The type of the message
value is specified by the user as a template parameter of the
Vertex class.

A vertex can send any number of messages in a superstep.
All messages sent to vertex V in superstep S are available,
via an iterator, when V ’s Compute() method is called in
superstep S + 1. There is no guaranteed order of messages
in the iterator, but it is guaranteed that messages will be
delivered and that they will not be duplicated.

A common usage pattern is for a vertex V to iterate over
its outgoing edges, sending a message to the destination ver-
tex of each edge, as shown in the PageRank algorithm in
Figure 4 (Section 5.1 below). However, dest_vertex need

template <typename VertexValue,
typename EdgeValue,
typename MessageValue>

class Vertex {
public:
virtual void Compute(MessageIterator* msgs) = 0;

const string& vertex_id() const;
int64 superstep() const;

const VertexValue& GetValue();
VertexValue* MutableValue();
OutEdgeIterator GetOutEdgeIterator();

void SendMessageTo(const string& dest_vertex,
const MessageValue& message);

void VoteToHalt();
};

Figure 3: The Vertex API foundations.

not be a neighbor of V . A vertex could learn the identifier
of a non-neighbor from a message received earlier, or ver-
tex identifiers could be known implicitly. For example, the
graph could be a clique, with well-known vertex identifiers
V1 through Vn, in which case there may be no need to even
keep explicit edges in the graph.

When the destination vertex of any message does not ex-
ist, we execute user-defined handlers. A handler could, for
example, create the missing vertex or remove the dangling
edge from its source vertex.

3.2 Combiners
Sending a message, especially to a vertex on another ma-

chine, incurs some overhead. This can be reduced in some
cases with help from the user. For example, suppose that
Compute() receives integer messages and that only the sum
matters, as opposed to the individual values. In that case the
system can combine several messages intended for a vertex
V into a single message containing their sum, reducing the
number of messages that must be transmitted and bu↵ered.

Combiners are not enabled by default, because there is
no mechanical way to find a useful combining function that
is consistent with the semantics of the user’s Compute()

method. To enable this optimization the user subclasses
the Combiner class, overriding a virtual Combine() method.
There are no guarantees about which (if any) messages are
combined, the groupings presented to the combiner, or the
order of combining, so combiners should only be enabled for
commutative and associative operations.

For some algorithms, such as single-source shortest paths
(Section 5.2), we have observed more than a fourfold reduc-
tion in message tra�c by using combiners.

3.3 Aggregators
Pregel aggregators are a mechanism for global communica-

tion, monitoring, and data. Each vertex can provide a value
to an aggregator in superstep S, the system combines those
values using a reduction operator, and the resulting value
is made available to all vertices in superstep S + 1. Pregel
includes a number of predefined aggregators, such as min,
max, or sum operations on various integer or string types.

Aggregators can be used for statistics. For instance, a sum

aggregator applied to the out-degree of each vertex yields the

137

Lecture	 14	 :	 590.02	 Spring	 13	 14	

User	 overrides	 this	
compute	 funcFon	 	

Vertex	 value	 can	 be	
modified	

Messages	 can	 be	 sent	
to	 any	 dest_vertex	
(whose	 id	 is	 known)	

Vertex	 API	
•  MessageIterator	 contains	 all	 the	 messages	 received.	 	

	
•  Message	 ordering	 is	 not	 guaranteed,	 but	 all	 messages	 are	

guaranteed	 to	 be	 delivered	 without	 duplicaFon.	
	
•  VerFces	 can	 also	 send	 messages	 to	 other	 verFces	 (whose	 id	 it	

knows	 from	 prior	 messages)	

•  No	 need	 to	 explicitly	 maintain	 an	 edgeset.	

Lecture	 14	 :	 590.02	 Spring	 13	 15	

PageRank	
4.4 Master implementation

The master is primarily responsible for coordinating the
activities of workers. Each worker is assigned a unique iden-
tifier at the time of its registration. The master maintains a
list of all workers currently known to be alive, including the
worker’s unique identifier, its addressing information, and
which portion of the graph it has been assigned. The size of
the master’s data structures is proportional to the number
of partitions, not the number of vertices or edges, so a sin-
gle master can coordinate computation for even a very large
graph.

Most master operations, including input, output, compu-
tation, and saving and resuming from checkpoints, are ter-
minated at barriers: the master sends the same request to
every worker that was known to be alive at the time the op-
eration begins, and waits for a response from every worker.
If any worker fails, the master enters recovery mode as de-
scribed in section 4.2. If the barrier synchronization suc-
ceeds, the master proceeds to the next stage. In the case of
a computation barrier, for example, the master increments
the global superstep index and proceeds to the next super-
step.

The master also maintains statistics about the progress of
computation and the state of the graph, such as the total size
of the graph, a histogram of its distribution of out-degrees,
the number of active vertices, the timing and message traf-
fic of recent supersteps, and the values of all user-defined
aggregators. To enable user monitoring, the master runs an
HTTP server that displays this information.

4.5 Aggregators
An aggregator (Section 3.3) computes a single global value

by applying an aggregation function to a set of values that
the user supplies. Each worker maintains a collection of ag-
gregator instances, identified by a type name and instance
name. When a worker executes a superstep for any partition
of the graph, the worker combines all of the values supplied
to an aggregator instance into a single local value: an ag-
gregator that is partially reduced over all of the worker’s
vertices in the partition. At the end of the superstep work-
ers form a tree to reduce partially reduced aggregators into
global values and deliver them to the master. We use a
tree-based reduction—rather than pipelining with a chain
of workers—to parallelize the use of CPU during reduction.
The master sends the global values to all workers at the
beginning of the next superstep.

5. APPLICATIONS
This section presents four examples that are simplified

versions of algorithms developed by Pregel users to solve real
problems: Page Rank, Shortest Paths, Bipartite Matching,
and a Semi-Clustering algorithm.

5.1 PageRank
A Pregel implementation of a PageRank algorithm [7] is

shown in Figure 4. The PageRankVertex class inherits from
Vertex. Its vertex value type is double to store a tentative
PageRank, and its message type is double to carry PageR-
ank fractions, while the edge value type is void because
edges do not store information. We assume that the graph
is initialized so that in superstep 0, the value of each vertex
is 1 / NumVertices(). In each of the first 30 supersteps,
each vertex sends along each outgoing edge its tentative

class PageRankVertex
: public Vertex<double, void, double> {

public:
virtual void Compute(MessageIterator* msgs) {
if (superstep() >= 1) {

double sum = 0;
for (; !msgs->Done(); msgs->Next())
sum += msgs->Value();

*MutableValue() =
0.15 / NumVertices() + 0.85 * sum;

}

if (superstep() < 30) {
const int64 n = GetOutEdgeIterator().size();
SendMessageToAllNeighbors(GetValue() / n);

} else {
VoteToHalt();

}
}

};

Figure 4: PageRank implemented in Pregel.

PageRank divided by the number of outgoing edges. Start-
ing from superstep 1, each vertex sums up the values arriving
on messages into sum and sets its own tentative PageRank
to 0.15/NumVertices() + 0.85⇥ sum. After reaching super-
step 30, no further messages are sent and each vertex votes
to halt. In practice, a PageRank algorithm would run until
convergence was achieved, and aggregators would be useful
for detecting the convergence condition.

5.2 Shortest Paths
Shortest paths problems are among the best known prob-

lems in graph theory and arise in a wide variety of applica-
tions [10, 24], with several important variants. The single-
source shortest paths problem requires finding a shortest
path between a single source vertex and every other vertex
in the graph. The s-t shortest path problem requires find-
ing a single shortest path between given vertices s and t; it
has obvious practical applications like driving directions and
has received a great deal of attention. It is also relatively
easy—solutions in typical graphs like road networks visit a
tiny fraction of vertices, with Lumsdaine et al [31] observ-
ing visits to 80,000 vertices out of 32 million in one example.
A third variant, all-pairs shortest paths, is impractical for
large graphs because of its O(|V |2) storage requirements.

For simplicity and conciseness, we focus here on the single-
source variant that fits Pregel’s target of large-scale graphs
very well, but o↵ers more interesting scaling data than the
s-t shortest path problem. An implementation is shown in
Figure 5.

In this algorithm, we assume the value associated with
each vertex is initialized to INF (a constant larger than any
feasible distance in the graph from the source vertex). In
each superstep, each vertex first receives, as messages from
its neighbors, updated potential minimum distances from
the source vertex. If the minimum of these updates is less
than the value currently associated with the vertex, then this
vertex updates its value and sends out potential updates to
its neighbors, consisting of the weight of each outgoing edge
added to the newly found minimum distance. In the first
superstep, only the source vertex will update its value (from
INF to zero) and send updates to its immediate neighbors.
These neighbors in turn will update their values and send

140

Lecture	 14	 :	 590.02	 Spring	 13	 16	

Combiners	
•  If	 messages	 are	 aggregated	 (“reduced”)	 using	 an	 associaFve	 and	

commutaFve	 funcFon,	 then	 the	 system	 can	 combine	 several	
messages	 intended	 for	 a	 vertex	 into	 1.	 	

•  Reduces	 the	 number	 of	 messages	 communicated/buffered.	

Lecture	 14	 :	 590.02	 Spring	 13	 17	

Single	 Source	 Shortest	 Paths	

Lecture	 14	 :	 590.02	 Spring	 13	 18	

class ShortestPathVertex
: public Vertex<int, int, int> {

void Compute(MessageIterator* msgs) {
int mindist = IsSource(vertex_id()) ? 0 : INF;
for (; !msgs->Done(); msgs->Next())
mindist = min(mindist, msgs->Value());

if (mindist < GetValue()) {
*MutableValue() = mindist;
OutEdgeIterator iter = GetOutEdgeIterator();
for (; !iter.Done(); iter.Next())

SendMessageTo(iter.Target(),
mindist + iter.GetValue());

}
VoteToHalt();

}
};

Figure 5: Single-source shortest paths.

class MinIntCombiner : public Combiner<int> {
virtual void Combine(MessageIterator* msgs) {
int mindist = INF;
for (; !msgs->Done(); msgs->Next())
mindist = min(mindist, msgs->Value());

Output("combined_source", mindist);
}

};

Figure 6: Combiner that takes minimum of message

values.

messages, resulting in a wavefront of updates through the
graph. The algorithm terminates when no more updates
occur, after which the value associated with each vertex de-
notes the minimum distance from the source vertex to that
vertex. (The value INF denotes that the vertex cannot be
reached at all.) Termination is guaranteed if all edge weights
are non-negative.

Messages in this algorithm consist of potential shorter dis-
tances. Since the receiving vertex is ultimately only inter-
ested in the minimum, this algorithm is amenable to op-
timization using a combiner (Section 3.2). The combiner
shown in Figure 6 greatly reduces the amount of data sent
between workers, as well as the amount of data bu↵ered
prior to executing the next superstep. While the code in
Figure 5 only computes distances, modifying it to compute
the shortest paths tree as well is quite straightforward.

This algorithm may perform many more comparisons than
sequential counterparts such as Dijkstra or Bellman-Ford [5,
15, 17, 24], but it is able to solve the shortest paths problem
at a scale that is infeasible with any single-machine imple-
mentation. More advanced parallel algorithms exist, e.g.,
Thorup [44] or the �-stepping method [37], and have been
used as the basis for special-purpose parallel shortest paths
implementations [12, 32]. Such advanced algorithms can also
be expressed in the Pregel framework. The simplicity of the
implementation in Figure 5, however, together with the al-
ready acceptable performance (see Section 6), may appeal
to users who can’t do extensive tuning or customization.

5.3 Bipartite Matching
The input to a bipartite matching algorithm consists of

two distinct sets of vertices with edges only between the
sets, and the output is a subset of edges with no common
endpoints. A maximal matching is one to which no addi-

tional edge can be added without sharing an endpoint. We
implemented a randomized maximal matching algorithm [1]
and a maximum-weight bipartite matching algorithm [4]; we
describe the former here.

In the Pregel implementation of this algorithm the ver-
tex value is a tuple of two values: a flag indicating which
set the vertex is in (L or R), and the name of its matched
vertex once known. The edge value has type void (edges
carry no information), and the messages are boolean. The
algorithm proceeds in cycles of four phases, where the phase
index is just the superstep index mod 4, using a three-way
handshake.

In phase 0 of a cycle, each left vertex not yet matched
sends a message to each of its neighbors to request a match,
and then unconditionally votes to halt. If it sent no messages
(because it is already matched, or has no outgoing edges),
or if all the message recipients are already matched, it will
never be reactivated. Otherwise, it will receive a response
in two supersteps and reactivate.

In phase 1 of a cycle, each right vertex not yet matched
randomly chooses one of the messages it receives, sends a
message granting that request, and sends messages to other
requestors denying it. Then it unconditionally votes to halt.

In phase 2 of a cycle, each left vertex not yet matched
chooses one of the grants it receives and sends an acceptance
message. Left vertices that are already matched will never
execute this phase, since they will not have sent a message
in phase 0.

Finally, in phase 3, an unmatched right vertex receives at
most one acceptance message. It notes the matched node
and unconditionally votes to halt—it has nothing further to
do.

5.4 Semi-Clustering
Pregel has been used for several di↵erent versions of clus-

tering. One version, semi-clustering, arises in social graphs.
Vertices in a social graph typically represent people, and

edges represent connections between them. Edges may be
based on explicit actions (e.g., adding a friend in a social
networking site), or may be inferred from people’s behav-
ior (e.g., email conversations or co-publication). Edges may
have weights, to represent the interactions’ frequency or
strength.

A semi-cluster in a social graph is a group of people who
interact frequently with each other and less frequently with
others. What distinguishes it from ordinary clustering is
that a vertex may belong to more than one semi-cluster.

This section describes a parallel greedy semi-clustering al-
gorithm. Its input is a weighted, undirected graph (repre-
sented in Pregel by constructing each edge twice, once in
each direction) and its output is at most Cmax semi-clusters,
each containing at most Vmax vertices, where Cmax and Vmax

are user-specified parameters.
A semi-cluster c is assigned a score,

Sc =
Ic � fBBc

Vc(Vc � 1)/2
, (1)

where Ic is the sum of the weights of all internal edges, Bc

is the sum of the weights of all boundary edges (i.e., edges
connecting a vertex in the semi-cluster to one outside it),
Vc is the number of vertices in the semi-cluster, and fB , the
boundary edge score factor, is a user-specified parameter,
usually between 0 and 1. The score is normalized, i.e., di-

141

class ShortestPathVertex
: public Vertex<int, int, int> {

void Compute(MessageIterator* msgs) {
int mindist = IsSource(vertex_id()) ? 0 : INF;
for (; !msgs->Done(); msgs->Next())
mindist = min(mindist, msgs->Value());

if (mindist < GetValue()) {
*MutableValue() = mindist;
OutEdgeIterator iter = GetOutEdgeIterator();
for (; !iter.Done(); iter.Next())

SendMessageTo(iter.Target(),
mindist + iter.GetValue());

}
VoteToHalt();

}
};

Figure 5: Single-source shortest paths.

class MinIntCombiner : public Combiner<int> {
virtual void Combine(MessageIterator* msgs) {
int mindist = INF;
for (; !msgs->Done(); msgs->Next())
mindist = min(mindist, msgs->Value());

Output("combined_source", mindist);
}

};

Figure 6: Combiner that takes minimum of message

values.

messages, resulting in a wavefront of updates through the
graph. The algorithm terminates when no more updates
occur, after which the value associated with each vertex de-
notes the minimum distance from the source vertex to that
vertex. (The value INF denotes that the vertex cannot be
reached at all.) Termination is guaranteed if all edge weights
are non-negative.

Messages in this algorithm consist of potential shorter dis-
tances. Since the receiving vertex is ultimately only inter-
ested in the minimum, this algorithm is amenable to op-
timization using a combiner (Section 3.2). The combiner
shown in Figure 6 greatly reduces the amount of data sent
between workers, as well as the amount of data bu↵ered
prior to executing the next superstep. While the code in
Figure 5 only computes distances, modifying it to compute
the shortest paths tree as well is quite straightforward.

This algorithm may perform many more comparisons than
sequential counterparts such as Dijkstra or Bellman-Ford [5,
15, 17, 24], but it is able to solve the shortest paths problem
at a scale that is infeasible with any single-machine imple-
mentation. More advanced parallel algorithms exist, e.g.,
Thorup [44] or the �-stepping method [37], and have been
used as the basis for special-purpose parallel shortest paths
implementations [12, 32]. Such advanced algorithms can also
be expressed in the Pregel framework. The simplicity of the
implementation in Figure 5, however, together with the al-
ready acceptable performance (see Section 6), may appeal
to users who can’t do extensive tuning or customization.

5.3 Bipartite Matching
The input to a bipartite matching algorithm consists of

two distinct sets of vertices with edges only between the
sets, and the output is a subset of edges with no common
endpoints. A maximal matching is one to which no addi-

tional edge can be added without sharing an endpoint. We
implemented a randomized maximal matching algorithm [1]
and a maximum-weight bipartite matching algorithm [4]; we
describe the former here.

In the Pregel implementation of this algorithm the ver-
tex value is a tuple of two values: a flag indicating which
set the vertex is in (L or R), and the name of its matched
vertex once known. The edge value has type void (edges
carry no information), and the messages are boolean. The
algorithm proceeds in cycles of four phases, where the phase
index is just the superstep index mod 4, using a three-way
handshake.

In phase 0 of a cycle, each left vertex not yet matched
sends a message to each of its neighbors to request a match,
and then unconditionally votes to halt. If it sent no messages
(because it is already matched, or has no outgoing edges),
or if all the message recipients are already matched, it will
never be reactivated. Otherwise, it will receive a response
in two supersteps and reactivate.

In phase 1 of a cycle, each right vertex not yet matched
randomly chooses one of the messages it receives, sends a
message granting that request, and sends messages to other
requestors denying it. Then it unconditionally votes to halt.

In phase 2 of a cycle, each left vertex not yet matched
chooses one of the grants it receives and sends an acceptance
message. Left vertices that are already matched will never
execute this phase, since they will not have sent a message
in phase 0.

Finally, in phase 3, an unmatched right vertex receives at
most one acceptance message. It notes the matched node
and unconditionally votes to halt—it has nothing further to
do.

5.4 Semi-Clustering
Pregel has been used for several di↵erent versions of clus-

tering. One version, semi-clustering, arises in social graphs.
Vertices in a social graph typically represent people, and

edges represent connections between them. Edges may be
based on explicit actions (e.g., adding a friend in a social
networking site), or may be inferred from people’s behav-
ior (e.g., email conversations or co-publication). Edges may
have weights, to represent the interactions’ frequency or
strength.

A semi-cluster in a social graph is a group of people who
interact frequently with each other and less frequently with
others. What distinguishes it from ordinary clustering is
that a vertex may belong to more than one semi-cluster.

This section describes a parallel greedy semi-clustering al-
gorithm. Its input is a weighted, undirected graph (repre-
sented in Pregel by constructing each edge twice, once in
each direction) and its output is at most Cmax semi-clusters,
each containing at most Vmax vertices, where Cmax and Vmax

are user-specified parameters.
A semi-cluster c is assigned a score,

Sc =
Ic � fBBc

Vc(Vc � 1)/2
, (1)

where Ic is the sum of the weights of all internal edges, Bc

is the sum of the weights of all boundary edges (i.e., edges
connecting a vertex in the semi-cluster to one outside it),
Vc is the number of vertices in the semi-cluster, and fB , the
boundary edge score factor, is a user-specified parameter,
usually between 0 and 1. The score is normalized, i.e., di-

141

Edge	 Weight	

Distance	 to	 source	

All	 VerFces	 iniFalized	 to	 INF	

AggregaFon	
•  Global	 communicaFon	

•  Each	 vertex	 can	 provide	 a	 value	 to	 an	 aggregator	 in	 a	 superstep	 S.	
ResulFng	 value	 is	 made	 available	 to	 all	 verFces	 in	 superstep	 S+1.	

•  System	 aggregates	 these	 values	 using	 a	 reduce	 step.	 	

Lecture	 14	 :	 590.02	 Spring	 13	 19	

Topology	 MutaFons	
•  Compute	 funcFon	 can	 add	 or	 remove	 verFces	
•  But	 this	 can	 cause	 race	 condiFons	

–  Vertex	 1	 creates	 an	 edge	 to	 vertex	 100	
Vertex	 2	 deletes	 vertex	 100	

–  Vertex	 1	 creates	 vertex	 100	 with	 value	 10	
Vertex	 2	 also	 creates	 vertex	 100	 with	 value	 12	

•  ParFal	 Order	 on	 operaFons	
–  Edge	 removal	 <	 vertex	 removal	 <	 vertex	 add	 <	 edge	 add	 (<	 means	 earlier)	

•  Handlers	 for	 conflicts	
–  Default:	 Pick	 a	 random	 acFon	
–  Can	 specify	 more	 complex	 handlers	

Lecture	 14	 :	 590.02	 Spring	 13	 20	

PREGEL	 ARCHITECTURE	

Lecture	 14	 :	 590.02	 Spring	 13	 21	

Graph	 ParFFoning	
•  VerFces	 are	 assigned	 to	 machines	 based	 on	 	

	 hash(vertex.id)	 mod	 N	

•  Can	 define	 other	 parFFons:	 co-‐locate	 all	 web	 pages	 from	 the	
same	 site	

•  Sparsest	 Cut	 Problem:	 minimize	 the	 edges	 across	 parFFons	

Lecture	 14	 :	 590.02	 Spring	 13	 22	

Processing	
•  Master	 coordinates	 a	 set	 of	 workers.	 	

–  Determines	 the	 number	 of	 parFFons	
–  Determines	 assignment	 of	 parFFons	 to	 workers	

•  Worker	 processes	 one	 or	 more	 parFFons	
–  Workers	 know	 the	 enFre	 set	 of	 parFFon	 to	 worker	 assignments	 and	 the	

parFFon	 funcFon	 	
–  All	 verFces	 in	 Worker’s	 parFFon	 are	 iniFalized	 to	 acFve	
–  Worker	 loops	 through	 vertex	 list	 and	 sends	 any	 messages	 asynchronously	
–  Worker	 noFfies	 master	 of	 #	 acFve	 verFces	 at	 the	 end	 of	 a	 superstep	

Lecture	 14	 :	 590.02	 Spring	 13	 23	

Fault	 Tolerance	
•  Checkpoint:	 master	 instructs	 workers	 to	 save	 state	 to	 persistent	

storage	 (e.g.	 HDFS)	
–  Vertex	 values	
–  Edge	 values	
–  Incoming	 messages	

•  Master	 saves	 to	 disk	 aggregator	 values	

•  Worker	 failure	 is	 detected	 using	 a	 heartbeat.	 	

•  New	 worker	 is	 created	 using	 state	 from	 previous	 checkpoint	
(which	 could	 be	 several	 supersteps	 before	 current	 superstep)	

Lecture	 14	 :	 590.02	 Spring	 13	 24	

Summary	
•  Map-‐reduce	 has	 no	 naFve	 support	 for	 iteraFons	

–  No	 Loop	 construct	
–  Write	 to	 disk	 and	 read	 from	 disk	 in	 each	 step,	 even	 if	 a	 the	 data	 is	 an	

invariant	 in	 the	 loop.	 	

•  Systems	 like	 HaLoop	 introduce	 inter-‐iteraFon	 locality	 and	 caching	
to	 help	 iteraFons	 on	 map-‐reduce.	 	

•  Pregel	 is	 a	 vertex	 oriented	 programming	 model	 and	 system	 for	
graph	 processing	 with	 built	 in	 features	 for	 iteraFve	 processing	 on	
graphs.	

Lecture	 14	 :	 590.02	 Spring	 13	 25	

