Graph Processing &
Bulk Synchronous Parallel Model

CompSci 590.03
Instructor: Ashwin Machanavajjhala

Lecture 14 : 590.02 Spring 13 1 DUke

UNIVYERSITY

Recap: Graph Algorithms

 Many graph algorithms need iterative computation

* No native support for iteration in Map-Reduce

— Each iteration writes/reads data from disk leading to overheads
— Need to design algorithms that can minimize number of iterations

Lecture 14 : 590.02 Spring 13 2 Duke

UNIVYERSITY

This Class

* |teration Aware Map-Reduce

* Pregel (Bulk Synchronous Parallel Model) for Graph Processing

Lecture 14 : 590.02 Spring 13 3 Duke

UNIVYERSITY

ITERATION AWARE MAP-REDUCE

Lecture 13 : 590.02 Spring 13 4 DUke

UNIVYERSITY

Iterative Computations

PageRank:

do
next (CM + (1 C) U)pcur
Whl|e(pnext |= cur)

* Loops are not supported in Map-Reduce
— Need to encode iteration in the launching script

* Mis aloop invariant. But needs to written to disk and read from
disk in every step.

* M may not be co-located with mappers and reducers running the
iterative computation

Lecture 13 : 590.02 Spring 13 g Duke

UNIVYERSITY

Haloop

* |[terative Programs

Ri;+1 = Ro U (RZ > L)

Invariant

Initial

Relation Relation

Lecture 13 : 590.02 Spring 13 6 Duke

UNIVYERSITY

Loop aware task scheduling

* Inter-lteration Locality

* Caching and Indexing of invariant tables

M20: RO-split0 ROO: partition 0
M21: R1-split0 RO1: partition 0
n1
n1
MOO: L-splitO R10: partition 1
MO1: L-splitO
n2
n2
M10: L-split1 »
R20: partition 2 M11: L-split1
n3
n2 n3
Unnecessary computation <-——-—- Unnecessary communication

Lecture 13 : 590.02 Spring 13 7 Duke

UNIVYERSITY

iIMapReduce

 Reduce output is directly sent to mappers, instead of writing to
distributed file system.

* Loop invariant is loaded onto the maps only once.

Graph Graph Graph
Partition (1) Partition (2) Partition (n)
VL A\ 4 A\ 4 ;
Map 1 Map 2 Map n
[Shuffle]

KV KV KV
Lecture 14 : 590.02 Spring 13 8 Duke

UNIVYERSITY

PREGEL

Lecture 14 : 590.02 Spring 13 9 DUke

UNIVYERSITY

Mittelhufen A s.Beikarte

Seven Bridges of
Konigsberg

Haberbe

= i

=
LTy

GALY el T
N g

o

G ' |
KONIGSBERG
1: 16.000

Mse?fe-r

ttefhufen
.000

Meter

S e e T e
‘Wagner & Debes, Leipsig. J

Pregel Overview

Processing occurs in a series of supersteps

In superstep S:

Vertex may read messages sent to V in superstep S-1
Vertex may perform some computation

Vertex may send messages to other vertices

Vertex computation within a superstep can be arbitrarily
parallelized.

All communication happens between two supersteps

Duke

Lecture 14 : 590.02 Spring 13 UNIVERSITY

Pregel

Input: A directed graph G.
Each vertex is associated with an id and a value.
Edges may also contain values.

Edges are not a first class citizen — they have no associated
computation
— Vertices can modify its state/edge state/edge set

Computation finishes when
. . . Vote to halt
all vertices enter the inactive state —

- T

\/

Message received

Duke

Lecture 14 : 590.02 Spring 13 UNIVERSITY

Example

Superstep 0
Superstep 1
Superstep 2

Superstep 3

Figure 2: Maximum Value Example. Dotted lines
are messages. Shaded vertices have voted to halt.

Lecture 14 : 590.02 Spring 13 13 Duke

UNIVYERSITY

Vertex API

template <typename VertexValue,

typename EdgeValue, User overrides this
typename MessageValue> compute function
class Vertex {
public:

virtual void Compute(Messagelterator* msgs) = 0;

. . Vertex value can be
const string& vertex_id() const; modified

int64 superstep() const;

const VertexValue& GetValue();
VertexValue*x MutableValue();
OutEdgeIterator GetOutEdgeIterator();

Messages can be sent

to any dest_vertex

void SendMessageTo(const string& dest_vertex, (whose id is known)

const MessageValue& message);
void VoteToHalt () ;

s
Lecture 14 : 590.02 Spring 13 14 Duke

UNIVYERSITY

Vertex API

Messagelterator contains all the messages received.

Message ordering is not guaranteed, but all messages are
guaranteed to be delivered without duplication.

Vertices can also send messages to other vertices (whose id it
knows from prior messages)

No need to explicitly maintain an edgeset.

Lecture 14 : 590.02 Spring 13 15 Duke

UNITWVYERSIT Y

PageRank

class PageRankVertex
: public Vertex<double, void, double> {
public:
virtual void Compute(Messagelterator* msgs) {
if (superstep() >= 1) {
double sum = O;
for (; !'msgs->Done(); msgs->Next())
sum += msgs->Value();
*MutableValue() =
0.15 / NumVertices() + 0.85 * sum;

}

if (superstep() < 30) {
const int64 n = GetOutEdgeIterator().size();
SendMessageToAllNeighbors(GetValue() / n);
} else {
VoteToHalt () ;
+
+

| Duke

Lecture 14 : 590.02 Spring 13
UNIYERSITY

Combiners

If messages are aggregated (“reduced”) using an associative and
commutative function, then the system can combine several
messages intended for a vertex into 1.

Reduces the number of messages communicated/buffered.

Lecture 14 : 590.02 Spring 13 17 Duke

UNITWVYERSIT Y

Single Source Shortest Paths

class ShortestPathVertex . . eae s
. public Vertex<int, int, int> { All Vertices initialized to INF

void Compute(MessageIlterator* msgs) {
int mindist = IsSource(vertex_id()) 7 O : INF;
for (; !msgs->Done(); msgs->Next())

mindist = min(mindist, msgs->Value()); ,
if (mindist < GetValue() Distance to source

*MutableValue() = mindist;

OutEdgeIterator iter = GetOutEdgeIterator();

for (; !iter.Done(); iter.Next())
SendMessageTo (iter.Target (),

mindist + iter.GetValue()); Edge Weight
}

VoteToHalt () ;

}; class MinIntCombiner : public Combiner<int> {
virtual void Combine(Messagelterator* msgs) {
int mindist = INF;
for (; !msgs->Done(); msgs->Next())
mindist = min(mindist, msgs->Value());
Output ("combined_source", mindist);

}

) D k
Lecture 14 : 590.02 Spring 13 18 u e

UNIVYERSITY

Aggregation

Global communication

Each vertex can provide a value to an aggregator in a superstep S.
Resulting value is made available to all vertices in superstep S+1.

System aggregates these values using a reduce step.

Lecture 14 : 590.02 Spring 13 19 Duke

UNIVYERSITY

Topology Mutations

 Compute function can add or remove vertices

e But this can cause race conditions

— Vertex 1 creates an edge to vertex 100
Vertex 2 deletes vertex 100

— Vertex 1 creates vertex 100 with value 10
Vertex 2 also creates vertex 100 with value 12

e Partial Order on operations

— Edge removal < vertex removal < vertex add < edge add (< means earlier)

e Handlers for conflicts

— Default: Pick a random action

— Can specify more complex handlers D]
Lecture 14 : 590.02 Spring 13 20 u e

UNLVYVERSITX

PREGEL ARCHITECTURE

Lecture 14 : 590.02 Spring 13 21 DUke

UNIVYERSITY

Graph Partitioning

Vertices are assigned to machines based on
hash(vertex.id) mod N

Can define other partitions: co-locate all web pages from the
same site

Sparsest Cut Problem: minimize the edges across partitions

Lecture 14 : 590.02 Spring 13 22 Duke

UNIVYERSITY

Processing

 Master coordinates a set of workers.
— Determines the number of partitions
— Determines assignment of partitions to workers

* Worker processes one or more partitions

— Workers know the entire set of partition to worker assignments and the
partition function

— All vertices in Worker’s partition are initialized to active
— Worker loops through vertex list and sends any messages asynchronously
— Worker notifies master of # active vertices at the end of a superstep

Lecture 14 : 590.02 Spring 13 23 Duke

UNITWVYERSIT Y

Fault Tolerance

Checkpoint: master instructs workers to save state to persistent
storage (e.g. HDFS)

— Vertex values

— Edge values

— Incoming messages

Master saves to disk aggregator values
Worker failure is detected using a heartbeat.

New worker is created using state from previous checkpoint
(which could be several supersteps before current superstep)

Lecture 14 : 590.02 Spring 13 24 Duke

UNITWVYERSIT Y

Summary

 Map-reduce has no native support for iterations
— No Loop construct

— Write to disk and read from disk in each step, even if a the data is an
invariant in the loop.

* Systems like HaLoop introduce inter-iteration locality and caching
to help iterations on map-reduce.

* Pregelis a vertex oriented programming model and system for
graph processing with built in features for iterative processing on

graphs.
. Duke

Lecture 14 : 590.02 Spring 13
U NIIYERSITY

