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Recap:	  Constraints	  
•  Transi'vity:	  	  	  

If	  x	  and	  y	  match,	  y	  and	  z	  match,	  then	  x	  and	  z	  must	  match	  
–  Useful	  in	  deduplica&on	  

•  Exclusivity:	  	  	  	  
If	  x	  matches	  with	  y,	  then	  z	  cannot	  match	  with	  y	  
–  Useful	  in	  record	  linkage	  (matches	  across	  two	  datasets)	  
–  Each	  dataset	  does	  not	  have	  any	  duplicates.	  

•  Rela'onal	  Constraints:	  
If	  x	  and	  y	  match,	  then	  z	  and	  w	  should	  match	  	  
–  If	  movies	  are	  the	  same,	  then	  directors	  must	  be	  the	  same	  
–  (We	  will	  see	  in	  next	  class)	  
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Recap:	  Constraint	  Types	  
Hard	  Constraint	   So8	  Constraint	  

Posi&ve	  Evidence	   Transi&vity:	  x=y	  &	  y=z	  =>	  x=z	  
	  

Rela'onal:	  If	  x,	  y	  match	  then	  z,	  w	  are	  
more	  likely	  to	  match	  
If	  two	  venues	  match,	  then	  their	  
papers	  are	  more	  likely	  to	  match	  

	  

Nega&ve	  Evidence	   Exclusivity:	  x	  and	  y	  must	  refer	  
to	  dis&nct	  en&&es	  
	  
Rela'onal:	  If	  x,y	  don’t	  match	  
then	  z,w	  cannot	  match	  
If	  two	  venues	  don’t	  match,	  
then	  their	  papers	  don’t	  
match	  

SoU	  Exclusivity:	  x	  and	  y	  are	  very	  likely	  
different	  elements	  
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Match	  Dependencies	  

When	  matching	  decisions	  depend	  on	  other	  
matching	  decisions	  (in	  other	  words,	  matching	  
decisions	  are	  not	  made	  independently	  for	  each	  
pair),	  we	  refer	  to	  the	  approach	  as	  collec9ve	  
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This	  Class	  
•  Collec&ve	  En&ty	  Resolu&on	  for	  Rela&onal	  Data	  

–  Problem	  Statement	  
–  Mo&va&ng	  Example	  
–  Similarity	  func&ons	  for	  Linked	  Data	  
–  Rela&onal	  Clustering	  
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Abstract	  Problem	  Statement	  
Real	  World	   Digital	  World	  
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Deduplica&on	  Problem	  Statement	  



Rela&onships	  are	  crucial	  



This	  Class	  
•  Collec&ve	  En&ty	  Resolu&on	  for	  Rela&onal	  Data	  

–  Problem	  Statement	  
–  Mo&va&ng	  Example	  
–  Similarity	  func&ons	  for	  Linked	  Data	  
–  Rela&onal	  Clustering	  
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before	   aUer	  

InfoVis	  Co-‐Author	  Network	  Fragment	  



Rela&onal	  Constraints	  

Very	  similar	  names.	  
Added	  evidence	  from	  
shared	  co-‐authors	  



Rela&onal	  Constraints	  

Very	  similar	  names	  but	  
no	  shared	  collaborators	  



Rela&onal	  Constraints	  

Co-‐authors	  are	  typically	  
dis&nct	  



Collec&ve	  En&ty	  Resolu&on	  	  

One	  resolu&on	  provides	  
evidence	  for	  another	  =>	  
joint	  resolu&on	  



This	  Class	  
•  Collec&ve	  En&ty	  Resolu&on	  for	  Rela&onal	  Data	  

–  Problem	  Statement	  
–  Mo&va&ng	  Example	  
–  Similarity	  func&ons	  for	  Linked	  Data	  
–  Rela&onal	  Clustering	  
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Rela&onal	  Features	  
•  There	  are	  a	  variety	  of	  ways	  of	  improving	  ER	  performance	  when	  

data	  is	  richer	  than	  a	  single	  table/en&ty	  type	  

•  One	  of	  the	  simplest	  is	  to	  use	  addi&onal	  informa&on,	  to	  enrich	  
model	  with	  	  rela>onal	  features	  that	  will	  provide	  richer	  context	  for	  
matching	  



Examples	  of	  rela&onal	  features	  
•  Value	  of	  edge	  or	  neighboring	  a`ribute	  (1-‐1)	  

•  Aggregates	  (1-‐many)	  
–  Mode	  (sum,	  min,	  max)	  of	  related	  a`ribute	  

•  Set	  similarity	  measures	  to	  compare	  nodes	  based	  on	  set	  of	  related	  
nodes,	  e.g.,	  compare	  neighborhoods	  
–  Overlap	  
–  Jaccard	  coefficient	  	  
–  Average	  similarity	  between	  set	  members	  



Preferen&al	  A`achment	  Score	  

•  Based	  on	  studies,	  e.g.	  [Newman,	  PRL01],	  showing	  that	  people	  
with	  a	  larger	  number	  of	  exis&ng	  rela&ons	  are	  more	  likely	  to	  
ini&ate	  new	  ones.	  

18	  

[Liben-‐Nowell	  &	  Kleinberg,	  JASIST07]	  

Set	  of	  a’s	  neighbors	  



Common	  Neighbors	  
•  Two	  nodes	  are	  likely	  to	  be	  connected	  in	  a	  graph	  if	  they	  share	  a	  

large	  number	  of	  common	  neighbors.	  
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Can	  be	  any	  kind	  of	  
shared	  a`ributes	  or	  	  
rela&onships	  to	  shared	  
en&&es	  	  



Adamic/Adar	  Measure	  
•  Two	  nodes	  are	  more	  similar	  if	  they	  share	  more	  items	  that	  are	  

overall	  less	  frequent	  

20	  

[Adamic	  &	  Adar,	  SN03]	  

Overall	  frequency	  
in	  the	  data	  Can	  be	  any	  kind	  of	  

shared	  a`ributes	  or	  	  
rela&onships	  to	  shared	  
en&&es	  	  



Katz	  Score	  
•  Two	  objects	  are	  similar	  if	  they	  are	  connected	  by	  shorter	  paths	  

21	  

Set	  of	  paths	  between	  
a	  and	  b	  of	  length	  exactly	  l 

Decay	  factor	  between	  0	  and	  1	  

¢  Since	  expensive	  to	  compute,	  oUen	  use	  approximate	  Katz,	  
assuming	  some	  max	  path	  length	  of	  k	  



Personalized	  Page	  Rank	  

•  Sta&onary	  distribu&on	  of	  a	  random	  walk:	  	  
–  With	  probability	  (1-‐c),	  follow	  a	  random	  outgoing	  edge	  
–  With	  probability	  c,	  jump	  to	  the	  target	  node	  ‘a’	  
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SimRank	  
•  “Two	  objects	  are	  similar	  if	  they	  are	  related	  to	  similar	  objects”	  

•  Defined	  as	  the	  unique	  solu&on	  to:	  

•  Computed	  by	  itera&ng	  to	  convergence	  
•  Ini&aliza&on	  to	  s(a,	  b)	  =	  1	  if	  a=b	  and	  0	  otherwise	  

23	  

[Jeh	  &	  Widom,	  KDD02]	  

Set	  of	  incoming	  edges	  into	  a	  

Decay	  factor	  between	  0	  and	  1	  



Intui&on	  behind	  Simrank	  
•  	  sim(a,b)	  measures	  how	  soon	  two	  (reverse)	  random	  walks	  star&ng	  

from	  a	  and	  b	  meet	  at	  the	  same	  node.	  

•  Works	  best	  for	  bipar&te	  graphs	  (having	  two	  types	  of	  en&&es)	  
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Intui&on	  behind	  Simrank	  
Expected	  Distance	  

–  	  d(u,v)	  	  =	  	  0,	  if	  u	  =	  v	  

–  	  t:	  tour	  (path	  with	  cycles)	  star&ng	  at	  u	  and	  ending	  at	  v	  
–  	  t	  =	  [w1,	  w2,	  …,	  wk]	  
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Figure 3: Little information is available for A, which is cited
only by B.

figure, Am is shown as a better match for A than A1, since Am’s
other citer is B0, which is similar to B.
The example demonstrates the case where we are interested in

documents similar to document A about which there is little infor-
mation. We can also consider the complementary case where we
are interested in a general document C, and ask whether A should
be included on a list of documents most similar to C. In our ex-
ample A has only one in-citation, and it may be the case that this
is an “outlier” citation. It would be safer to consider only docu-
ments for which we have more information. On the other hand, we
don’t want to eliminate unpopular documents from consideration or
popular documents to be favored for every query. If we eliminated
the constant factor 1

|I(b)| from equation (1), then documents b with
a very high popularity would have a high similarity score with any
other document a. As a compromise, we can weigh the final results
of the algorithm by popularity, using the asymmetric formula

sP (a, b) = s(a, b) · |I(b)|P (6)

where the constant P 2 (0, 1) is a parameter adjustable by the end
user. In Section 6 we discuss experimentation with this weighting
scheme.
Note that although we have used documents as examples of un-

popular objects, the same ideas apply in other domains, such as to
items rarely purchased, courses rarely taken, etc.

5 Random Surfer-Pairs Model
As discussed in Section 4.2, it is important to have an intuition for
the similarity scores produced by the algorithm. For this we provide
an intuitive model based on “random surfers”. (Readers not inter-
ested in underlying models may proceed directly to Section 6 on
experimental results.) We will show that the SimRank score s(a, b)
measures how soon two random surfers are expected to meet at the
same node if they started at nodes a and b and randomly walked the
graph backwards. The details involve some complexity, and are de-
veloped in the remainder of this section. The model is presented in
the context of general directed graphs; variations for bipartite Sim-
Rank (Section 4.3) are easy to derive and we leave them to the inter-
ested reader.

5.1 Expected Distance

Let H be any strongly connected graph (in which a path exists be-
tween every two nodes). Let u, v be any two nodes inH . We define

v w

u

(a) (b) (c)

Figure 4: Sample graph structures.

the expected distance2 d(u, v) from u to v as

d(u, v) =

X

t:u v

P [t]l(t) (7)

The summation is taken over all tours t (paths that may have cycles)
which start at u and end at v, and do not touch v except at the end.
For a tour t = hw1, . . . , wki, the length l(t) of t is k�1, the number
of edges in t. The probability P [t] of traveling t is

Qk�1
i=1

1
|O(wi)|

, or
1 if l(t) = 0. Note that the case where u = v, for which d(u, v) =

0, is a special case of (7): only one tour is in the summation, and it
has length 0. Because of the presence of cycles, there are infinitely
many tours from u to v, and (7) is an (convergent) infinite sum. The
expected distance from u to v is exactly the expected number of
steps a random surfer, who at each step follows a random out-edge,
would take before he first reaches v, starting from u.

5.2 Expected Meeting Distance

For our model, we extend the concept of expected distance to ex-
pected meeting distance (EMD). Intuitively, the expected meeting
distancem(a, b) between a and b is the expected number of steps re-
quired before two surfers, one starting at a and the other at b, would
meet if they walked (randomly) in lock-step. The EMD is symmetric
by definition. Before formalizing EMD, let us consider a few exam-
ples. The EMD between any two distinct nodes in Figure 4(a) is
(informally)1, since two surfers walking the loop in lock-step will
follow each other forever. In Figure 4(b),m(u, v) = m(u, w) = 1
(surfers will never meet) andm(v, w) = 1 (surfers meet on the next
step), suggesting that v and w are much more similar to each other
than u is to v or w. Between two distinct nodes of 4(c), the EMD is
3, suggesting a lower similarity than between v and w in 4(b), but
higher than between u and v (or u and w).
To define EMD formally in G, we use the derived graph G2 of

node-pairs. Each node (a, b) of V 2 can be thought of as the present
state of a pair of surfers in V , where an edge from (a, b) to (c, d)

in G2 says that in the original graph G, one surfer can move from
a to c while the other moves from b to d. A tour in G2 of length n
represents a pair of tours in G also having length n.
The EMD m(a, b) is simply the expected distance in G2 from

(a, b) to any singleton node (x, x) 2 V 2, since singleton nodes in
G2 represent states where both surfers are at the same node. More
precisely,

m(a, b) =

X

t:(a,b) (x,x)

P [t]l(t) (8)

2In the literature this quantity, in undirected graphs, is known as the hit-
ting time [14], but we will develop the idea differently and so choose to use
another name for our presentation.
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Intui&on	  behind	  Simrank	  
Expected	  Mee'ng	  Distance	  
•  expected	  number	  of	  steps	  	  taken	  for	  2	  random	  walks	  star&ng	  

from	  a	  and	  b	  to	  meet.	  

•  Expected	  mee&ng	  distance	  in	  G	  is	  equivalent	  to	  expected	  
distance	  in	  G2.	  
–  Consider	  a	  graph	  G2	  =	  (V	  x	  V,	  E2)	  
–  There	  is	  an	  edge	  between	  (a,b)	  and	  (c,d)	  in	  E2,	  if	  there	  are	  edges	  (a,c)	  and	  

(b,d)	  in	  E	  
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Figure 3: Little information is available for A, which is cited
only by B.

figure, Am is shown as a better match for A than A1, since Am’s
other citer is B0, which is similar to B.
The example demonstrates the case where we are interested in

documents similar to document A about which there is little infor-
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are interested in a general document C, and ask whether A should
be included on a list of documents most similar to C. In our ex-
ample A has only one in-citation, and it may be the case that this
is an “outlier” citation. It would be safer to consider only docu-
ments for which we have more information. On the other hand, we
don’t want to eliminate unpopular documents from consideration or
popular documents to be favored for every query. If we eliminated
the constant factor 1

|I(b)| from equation (1), then documents b with
a very high popularity would have a high similarity score with any
other document a. As a compromise, we can weigh the final results
of the algorithm by popularity, using the asymmetric formula

sP (a, b) = s(a, b) · |I(b)|P (6)

where the constant P 2 (0, 1) is a parameter adjustable by the end
user. In Section 6 we discuss experimentation with this weighting
scheme.
Note that although we have used documents as examples of un-

popular objects, the same ideas apply in other domains, such as to
items rarely purchased, courses rarely taken, etc.

5 Random Surfer-Pairs Model
As discussed in Section 4.2, it is important to have an intuition for
the similarity scores produced by the algorithm. For this we provide
an intuitive model based on “random surfers”. (Readers not inter-
ested in underlying models may proceed directly to Section 6 on
experimental results.) We will show that the SimRank score s(a, b)
measures how soon two random surfers are expected to meet at the
same node if they started at nodes a and b and randomly walked the
graph backwards. The details involve some complexity, and are de-
veloped in the remainder of this section. The model is presented in
the context of general directed graphs; variations for bipartite Sim-
Rank (Section 4.3) are easy to derive and we leave them to the inter-
ested reader.

5.1 Expected Distance

Let H be any strongly connected graph (in which a path exists be-
tween every two nodes). Let u, v be any two nodes inH . We define
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the expected distance2 d(u, v) from u to v as

d(u, v) =

X

t:u v

P [t]l(t) (7)

The summation is taken over all tours t (paths that may have cycles)
which start at u and end at v, and do not touch v except at the end.
For a tour t = hw1, . . . , wki, the length l(t) of t is k�1, the number
of edges in t. The probability P [t] of traveling t is

Qk�1
i=1

1
|O(wi)|

, or
1 if l(t) = 0. Note that the case where u = v, for which d(u, v) =

0, is a special case of (7): only one tour is in the summation, and it
has length 0. Because of the presence of cycles, there are infinitely
many tours from u to v, and (7) is an (convergent) infinite sum. The
expected distance from u to v is exactly the expected number of
steps a random surfer, who at each step follows a random out-edge,
would take before he first reaches v, starting from u.

5.2 Expected Meeting Distance

For our model, we extend the concept of expected distance to ex-
pected meeting distance (EMD). Intuitively, the expected meeting
distancem(a, b) between a and b is the expected number of steps re-
quired before two surfers, one starting at a and the other at b, would
meet if they walked (randomly) in lock-step. The EMD is symmetric
by definition. Before formalizing EMD, let us consider a few exam-
ples. The EMD between any two distinct nodes in Figure 4(a) is
(informally)1, since two surfers walking the loop in lock-step will
follow each other forever. In Figure 4(b),m(u, v) = m(u, w) = 1
(surfers will never meet) andm(v, w) = 1 (surfers meet on the next
step), suggesting that v and w are much more similar to each other
than u is to v or w. Between two distinct nodes of 4(c), the EMD is
3, suggesting a lower similarity than between v and w in 4(b), but
higher than between u and v (or u and w).
To define EMD formally in G, we use the derived graph G2 of

node-pairs. Each node (a, b) of V 2 can be thought of as the present
state of a pair of surfers in V , where an edge from (a, b) to (c, d)

in G2 says that in the original graph G, one surfer can move from
a to c while the other moves from b to d. A tour in G2 of length n
represents a pair of tours in G also having length n.
The EMD m(a, b) is simply the expected distance in G2 from

(a, b) to any singleton node (x, x) 2 V 2, since singleton nodes in
G2 represent states where both surfers are at the same node. More
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Intui&on	  behind	  Simrank	  
Expected	  Mee'ng	  Distance	  
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	  m(u,v)	  	  =	  	  ∞	  
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Figure 3: Little information is available for A, which is cited
only by B.

figure, Am is shown as a better match for A than A1, since Am’s
other citer is B0, which is similar to B.
The example demonstrates the case where we are interested in

documents similar to document A about which there is little infor-
mation. We can also consider the complementary case where we
are interested in a general document C, and ask whether A should
be included on a list of documents most similar to C. In our ex-
ample A has only one in-citation, and it may be the case that this
is an “outlier” citation. It would be safer to consider only docu-
ments for which we have more information. On the other hand, we
don’t want to eliminate unpopular documents from consideration or
popular documents to be favored for every query. If we eliminated
the constant factor 1

|I(b)| from equation (1), then documents b with
a very high popularity would have a high similarity score with any
other document a. As a compromise, we can weigh the final results
of the algorithm by popularity, using the asymmetric formula

sP (a, b) = s(a, b) · |I(b)|P (6)

where the constant P 2 (0, 1) is a parameter adjustable by the end
user. In Section 6 we discuss experimentation with this weighting
scheme.
Note that although we have used documents as examples of un-

popular objects, the same ideas apply in other domains, such as to
items rarely purchased, courses rarely taken, etc.

5 Random Surfer-Pairs Model
As discussed in Section 4.2, it is important to have an intuition for
the similarity scores produced by the algorithm. For this we provide
an intuitive model based on “random surfers”. (Readers not inter-
ested in underlying models may proceed directly to Section 6 on
experimental results.) We will show that the SimRank score s(a, b)
measures how soon two random surfers are expected to meet at the
same node if they started at nodes a and b and randomly walked the
graph backwards. The details involve some complexity, and are de-
veloped in the remainder of this section. The model is presented in
the context of general directed graphs; variations for bipartite Sim-
Rank (Section 4.3) are easy to derive and we leave them to the inter-
ested reader.

5.1 Expected Distance

Let H be any strongly connected graph (in which a path exists be-
tween every two nodes). Let u, v be any two nodes inH . We define

v w

u

(a) (b) (c)

Figure 4: Sample graph structures.

the expected distance2 d(u, v) from u to v as

d(u, v) =

X

t:u v

P [t]l(t) (7)

The summation is taken over all tours t (paths that may have cycles)
which start at u and end at v, and do not touch v except at the end.
For a tour t = hw1, . . . , wki, the length l(t) of t is k�1, the number
of edges in t. The probability P [t] of traveling t is

Qk�1
i=1

1
|O(wi)|

, or
1 if l(t) = 0. Note that the case where u = v, for which d(u, v) =

0, is a special case of (7): only one tour is in the summation, and it
has length 0. Because of the presence of cycles, there are infinitely
many tours from u to v, and (7) is an (convergent) infinite sum. The
expected distance from u to v is exactly the expected number of
steps a random surfer, who at each step follows a random out-edge,
would take before he first reaches v, starting from u.

5.2 Expected Meeting Distance

For our model, we extend the concept of expected distance to ex-
pected meeting distance (EMD). Intuitively, the expected meeting
distancem(a, b) between a and b is the expected number of steps re-
quired before two surfers, one starting at a and the other at b, would
meet if they walked (randomly) in lock-step. The EMD is symmetric
by definition. Before formalizing EMD, let us consider a few exam-
ples. The EMD between any two distinct nodes in Figure 4(a) is
(informally)1, since two surfers walking the loop in lock-step will
follow each other forever. In Figure 4(b),m(u, v) = m(u, w) = 1
(surfers will never meet) andm(v, w) = 1 (surfers meet on the next
step), suggesting that v and w are much more similar to each other
than u is to v or w. Between two distinct nodes of 4(c), the EMD is
3, suggesting a lower similarity than between v and w in 4(b), but
higher than between u and v (or u and w).
To define EMD formally in G, we use the derived graph G2 of

node-pairs. Each node (a, b) of V 2 can be thought of as the present
state of a pair of surfers in V , where an edge from (a, b) to (c, d)

in G2 says that in the original graph G, one surfer can move from
a to c while the other moves from b to d. A tour in G2 of length n
represents a pair of tours in G also having length n.
The EMD m(a, b) is simply the expected distance in G2 from

(a, b) to any singleton node (x, x) 2 V 2, since singleton nodes in
G2 represent states where both surfers are at the same node. More
precisely,

m(a, b) =

X

t:(a,b) (x,x)

P [t]l(t) (8)

2In the literature this quantity, in undirected graphs, is known as the hit-
ting time [14], but we will develop the idea differently and so choose to use
another name for our presentation.
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Figure 3: Little information is available for A, which is cited
only by B.

figure, Am is shown as a better match for A than A1, since Am’s
other citer is B0, which is similar to B.
The example demonstrates the case where we are interested in

documents similar to document A about which there is little infor-
mation. We can also consider the complementary case where we
are interested in a general document C, and ask whether A should
be included on a list of documents most similar to C. In our ex-
ample A has only one in-citation, and it may be the case that this
is an “outlier” citation. It would be safer to consider only docu-
ments for which we have more information. On the other hand, we
don’t want to eliminate unpopular documents from consideration or
popular documents to be favored for every query. If we eliminated
the constant factor 1

|I(b)| from equation (1), then documents b with
a very high popularity would have a high similarity score with any
other document a. As a compromise, we can weigh the final results
of the algorithm by popularity, using the asymmetric formula

sP (a, b) = s(a, b) · |I(b)|P (6)

where the constant P 2 (0, 1) is a parameter adjustable by the end
user. In Section 6 we discuss experimentation with this weighting
scheme.
Note that although we have used documents as examples of un-

popular objects, the same ideas apply in other domains, such as to
items rarely purchased, courses rarely taken, etc.

5 Random Surfer-Pairs Model
As discussed in Section 4.2, it is important to have an intuition for
the similarity scores produced by the algorithm. For this we provide
an intuitive model based on “random surfers”. (Readers not inter-
ested in underlying models may proceed directly to Section 6 on
experimental results.) We will show that the SimRank score s(a, b)
measures how soon two random surfers are expected to meet at the
same node if they started at nodes a and b and randomly walked the
graph backwards. The details involve some complexity, and are de-
veloped in the remainder of this section. The model is presented in
the context of general directed graphs; variations for bipartite Sim-
Rank (Section 4.3) are easy to derive and we leave them to the inter-
ested reader.

5.1 Expected Distance

Let H be any strongly connected graph (in which a path exists be-
tween every two nodes). Let u, v be any two nodes inH . We define

v w

u

(a) (b) (c)

Figure 4: Sample graph structures.

the expected distance2 d(u, v) from u to v as

d(u, v) =
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t:u v

P [t]l(t) (7)
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which start at u and end at v, and do not touch v except at the end.
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, or
1 if l(t) = 0. Note that the case where u = v, for which d(u, v) =

0, is a special case of (7): only one tour is in the summation, and it
has length 0. Because of the presence of cycles, there are infinitely
many tours from u to v, and (7) is an (convergent) infinite sum. The
expected distance from u to v is exactly the expected number of
steps a random surfer, who at each step follows a random out-edge,
would take before he first reaches v, starting from u.

5.2 Expected Meeting Distance

For our model, we extend the concept of expected distance to ex-
pected meeting distance (EMD). Intuitively, the expected meeting
distancem(a, b) between a and b is the expected number of steps re-
quired before two surfers, one starting at a and the other at b, would
meet if they walked (randomly) in lock-step. The EMD is symmetric
by definition. Before formalizing EMD, let us consider a few exam-
ples. The EMD between any two distinct nodes in Figure 4(a) is
(informally)1, since two surfers walking the loop in lock-step will
follow each other forever. In Figure 4(b),m(u, v) = m(u, w) = 1
(surfers will never meet) andm(v, w) = 1 (surfers meet on the next
step), suggesting that v and w are much more similar to each other
than u is to v or w. Between two distinct nodes of 4(c), the EMD is
3, suggesting a lower similarity than between v and w in 4(b), but
higher than between u and v (or u and w).
To define EMD formally in G, we use the derived graph G2 of

node-pairs. Each node (a, b) of V 2 can be thought of as the present
state of a pair of surfers in V , where an edge from (a, b) to (c, d)

in G2 says that in the original graph G, one surfer can move from
a to c while the other moves from b to d. A tour in G2 of length n
represents a pair of tours in G also having length n.
The EMD m(a, b) is simply the expected distance in G2 from

(a, b) to any singleton node (x, x) 2 V 2, since singleton nodes in
G2 represent states where both surfers are at the same node. More
precisely,

m(a, b) =
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2In the literature this quantity, in undirected graphs, is known as the hit-
ting time [14], but we will develop the idea differently and so choose to use
another name for our presentation.
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don’t want to eliminate unpopular documents from consideration or
popular documents to be favored for every query. If we eliminated
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|I(b)| from equation (1), then documents b with
a very high popularity would have a high similarity score with any
other document a. As a compromise, we can weigh the final results
of the algorithm by popularity, using the asymmetric formula
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where the constant P 2 (0, 1) is a parameter adjustable by the end
user. In Section 6 we discuss experimentation with this weighting
scheme.
Note that although we have used documents as examples of un-

popular objects, the same ideas apply in other domains, such as to
items rarely purchased, courses rarely taken, etc.

5 Random Surfer-Pairs Model
As discussed in Section 4.2, it is important to have an intuition for
the similarity scores produced by the algorithm. For this we provide
an intuitive model based on “random surfers”. (Readers not inter-
ested in underlying models may proceed directly to Section 6 on
experimental results.) We will show that the SimRank score s(a, b)
measures how soon two random surfers are expected to meet at the
same node if they started at nodes a and b and randomly walked the
graph backwards. The details involve some complexity, and are de-
veloped in the remainder of this section. The model is presented in
the context of general directed graphs; variations for bipartite Sim-
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the expected distance2 d(u, v) from u to v as
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P [t]l(t) (7)

The summation is taken over all tours t (paths that may have cycles)
which start at u and end at v, and do not touch v except at the end.
For a tour t = hw1, . . . , wki, the length l(t) of t is k�1, the number
of edges in t. The probability P [t] of traveling t is
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, or
1 if l(t) = 0. Note that the case where u = v, for which d(u, v) =

0, is a special case of (7): only one tour is in the summation, and it
has length 0. Because of the presence of cycles, there are infinitely
many tours from u to v, and (7) is an (convergent) infinite sum. The
expected distance from u to v is exactly the expected number of
steps a random surfer, who at each step follows a random out-edge,
would take before he first reaches v, starting from u.

5.2 Expected Meeting Distance

For our model, we extend the concept of expected distance to ex-
pected meeting distance (EMD). Intuitively, the expected meeting
distancem(a, b) between a and b is the expected number of steps re-
quired before two surfers, one starting at a and the other at b, would
meet if they walked (randomly) in lock-step. The EMD is symmetric
by definition. Before formalizing EMD, let us consider a few exam-
ples. The EMD between any two distinct nodes in Figure 4(a) is
(informally)1, since two surfers walking the loop in lock-step will
follow each other forever. In Figure 4(b),m(u, v) = m(u, w) = 1
(surfers will never meet) andm(v, w) = 1 (surfers meet on the next
step), suggesting that v and w are much more similar to each other
than u is to v or w. Between two distinct nodes of 4(c), the EMD is
3, suggesting a lower similarity than between v and w in 4(b), but
higher than between u and v (or u and w).
To define EMD formally in G, we use the derived graph G2 of

node-pairs. Each node (a, b) of V 2 can be thought of as the present
state of a pair of surfers in V , where an edge from (a, b) to (c, d)

in G2 says that in the original graph G, one surfer can move from
a to c while the other moves from b to d. A tour in G2 of length n
represents a pair of tours in G also having length n.
The EMD m(a, b) is simply the expected distance in G2 from

(a, b) to any singleton node (x, x) 2 V 2, since singleton nodes in
G2 represent states where both surfers are at the same node. More
precisely,

m(a, b) =

X

t:(a,b) (x,x)

P [t]l(t) (8)

2In the literature this quantity, in undirected graphs, is known as the hit-
ting time [14], but we will develop the idea differently and so choose to use
another name for our presentation.
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Intui&on	  behind	  Simrank	  
Expected-‐f	  Mee&ng	  Distance	  
	  
•  Map	  distance	  l(t)	  to	  f(l(t),	  where	  f(z)	  =	  cz,	  0	  <	  c	  <	  1	  

•  Large	  distances	  become	  small	  similari&es	  
•  Small	  distances	  become	  large	  similari&es	  
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The sum is taken over all tours t starting from (a, b) which touch a
singleton node at the end and only at the end. Unfortunately,G2 may
not always be strongly connected (even if G is), and in such cases
there may be no tours t for (a, b) in the summation (8). The intuitive
definition form(a, b) in this case is1, as in Figure 4(b), discussed
above. However, this definition would cause problems in defining
distances for nodes from which some tours lead to singleton nodes
while others lead to (a, b). We discuss a solution to this problem in
the next section.

5.3 Expected-f Meeting Distance
There are various ways to circumvent the “infinite EMD” problem
discussed in the previous section. For example, we can make each
surfer “teleport” with a small probability to a random node in the
graph (the solution suggested for PageRank in [16]). Our approach,
which as we will see yields equations equivalent to the SimRank
equations, is to map all distances to a finite interval: instead of com-
puting expected length l(t) of a tour, we can compute the expected
f(l(t)), for a nonnegative, monotonic function f which is bounded
on the domain [0,1). With this replacement we get the expected-
f meeting distance. For our purposes, we choose the exponential
function f(z) = cz , where c 2 (0, 1) is a constant. The benefits of
this choice of f , which has values in the range (0, 1] over domain
[0,1), are:
• Equations generated are simple and easy to solve.
• Closer nodes have a lower score (meeting distances of 0 go to 1

and distances of1 go to 0), matching our intuition of similarity.
We define s0

(a, b), the similarity between a and b in G based on
expected-f meeting distance, as

s0
(a, b) =

X

t:(a,b) (x,x)

P [t]cl(t) (9)

where c is a constant in (0, 1). The summation is taken to be 0 if
there is no tour from (a, b) to any singleton nodes. Note from (9)
that s0

(a, b) 2 [0, 1] for all a, b, and that s0
(a, b) = 1 if a = b.

Let us consider these similarity scores on Figure 4 usingC = 0.8
as an example. Between any two distinct nodes a, b in Figure 4(a),
s0

(a, b) = 0. In Figure 4(b), s0
(v, w) = 0.8 while s0

(u, v) =

s0
(u, w) = 0. For any two distinct nodes in the complete graph of

Figure 4(c), s0
(a, b) ⇡ 0.47, a lower score than between v and w in

Figure 4(b).

5.4 Equivalence to SimRank
We now show that s0

(⇤, ⇤) exactly models our original definition
of SimRank scores by showing that s0

(⇤, ⇤) satisfies the SimRank
equations (1). To ease presentation, let us assume that all edges in
our graph G have been reversed, so following an edge is equivalent
to moving one step backwards in the original graph.3
First, to aid in understanding, we give an intuitive but infor-

mal argument about the expected distance d(u, v) in a graph; the
same ideas can be applied to the expected-f meeting distance. Sup-
pose a surfer is at u 2 V . At the next time step, he chooses
one of O1(u), . . . , O|O(u)|(u), each with probability 1

|O(u)| . Upon

3Had we written equation (1) in terms of out-neighbors instead of in-
neighbors, as may be appropriate in some domains, this step would not be
necessary.

choosing Oi(u), the expected number of steps he will still have to
travel is d(Oi(u), v) (the base case is when Oi(u) = v, for which
d(Oi(u), v) = 0). Accounting for the step he travels to get to
Oi(u), we get:

d(u, v) = 1 +

1

|O(u)|

|O(u)|X

i=1

d(Oi(u), v)

With this intuition in mind, we derive similar recursive equations
for s0

(a, b) which will show that s0
(a, b) = s(a, b). If a = b then

s0
(a, b) = s(a, b) = 1. If there is no path in G2 from (a, b) to any

singleton nodes, in which case s0
(a, b) = 0, it is easy to see from

equation (5) that s(a, b) = 0 as well, since no similarity would flow
to (a, b) (recall that edges have been reversed). Otherwise, consider
the tours t from (a, b) to a singleton node in which the first step is to
the out-neighbor Oz((a, b)). There is a one-to-one correspondence
between such t and tours t0 from Oz((a, b)) to a singleton node:
for each t0 we may derive a corresponding t by appending the edge
h(a, b), Oz((a, b))i at the beginning. Let T be the bijection that
takes each t0 to the corresponding t. If the length of t0 is l, then the
length of t = T (t0) is l + 1. Moreover, the probability of traveling t
is P [t] =

1
|O((a,b))|P [t0] =

1
|O(a)||O(b)|P [t0]. We can now split the

sum in (9) according to the first step of the tour t to write

s0
(a, b) =

|O((a,b))|X

z=1

X

t0: Oz((a,b)) (x,x)

P [T (t0)]cl(T (t0))

=

|O((a,b))|X

z=1

X

t0: Oz((a,b)) (x,x)

1

|O(a)||O(b)|P [t0]cl(t0)+1

=

c
|O(a)||O(b)|

|O((a,b))|X

z=1

X

t0: Oz((a,b)) (x,x)

P [t0]cl(t)

=

c
|O(a)||O(b)|

|O(a)|X

i=1

|O(b)|X

j=1

s0
(Oi(a), Oj(b)) (10)

Equation (10) is identical to the SimRank equation (1) with c =

C and in-edges swapped for out-edges. Since the solution to (1)
is unique, s0

(a, b) = s(a, b) for all a, b 2 V . Thus we have the
following theorem.

Theorem. The SimRank score, with parameter C, between two
nodes is their expected-f meeting distance traveling back-edges, for
f(z) = Cz .

Thus, two nodes with a high SimRank score can be thought of as
being “close” to a common “source” of similarity.

6 Experimental Results
We have proposed an algorithm for computing SimRank similarity
scores between nodes of a graph, a mathematical property that de-
pends only on the graph structure and can be computed in any graph.
In this section, we report on some preliminary experiments, whose
primary purpose is to show that SimRank scores do in fact refine
simpler notions of structural similarity for graph structures derived
from practical data sets. The experiments also illustrate the effects
of varying the parameters of the algorithm. Although performance
and scalability issues obviously are extremely important, they are
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Intui&on	  behind	  Simrank	  
•  s(a,b)	  is	  equivalent	  to	  s’(a,b)	  where	  in	  and	  out	  edges	  are	  

reversed.	  
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[Liben-‐Nowell,	  Kleinberg	  2003]	  

Many	  of	  the	  aforemen&oned	  similarity	  
func&ons	  are	  also	  used	  for	  link	  predic&on	  

in	  social	  networks	  



This	  Class	  
•  Collec&ve	  En&ty	  Resolu&on	  for	  Rela&onal	  Data	  

–  Problem	  Statement	  
–  Mo&va&ng	  Example	  
–  Similarity	  func&ons	  for	  Linked	  Data	  
–  Rela&onal	  Clustering	  

Lecture	  20	  :	  590.02	  Spring	  13	   31	  



Rela&onal	  Clustering	  
Blocking:	  	  
•  Iden&fy	  similar	  pairs	  of	  records.	  	  

Bootstrapping:	  	  
•  Create	  some	  high	  confidence	  clusters	  of	  duplicate	  amongst	  

blocked	  pairs.	  	  

Itera&on:	  	  
•  Merge	  two	  closest	  clusters	  if	  similarity	  >	  threshold	  
•  Update	  the	  similari&es	  between	  neighboring	  clusters	  based	  on	  

the	  fact	  that	  the	  cluster	  has	  been	  merged.	  	  	  
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Rela&onal	  Clustering	  
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1.  Find	  similar	  references	  using	  ‘blocking’	  
2.  Bootstrap	  clusters	  using	  a`ributes	  and	  rela&ons	  
3.  Compute	  similari&es	  for	  cluster	  pairs	  and	  insert	  into	  priority	  

queue	  

4.  Repeat	  un&l	  priority	  queue	  is	  empty	  
5.  	  	  	  	  	  	  	  	  	  	  	  Find	  ‘closest’	  cluster	  pair	  
6.  	  	  	  	  	  	  	  	  	  	  	  Stop	  if	  similarity	  below	  threshold	  
7.  	  	  	  	  	  	  	  	  	  	  	  Merge	  to	  create	  new	  cluster	  
8.  	  	  	  	  	  	  	  	  	  	  	  Update	  similarity	  for	  ‘related’	  clusters	  

•  O(n	  k	  log	  n)	  algorithm	  w/	  efficient	  implementa&on	  	  



Rela&onal	  Clustering	  
•  Never	  split	  clusters,	  only	  merge	  them	  

–  Allows	  efficient	  implementa&on	  
–  Errors	  early	  on	  in	  the	  process	  can	  lead	  to	  bad	  clustering/resolu&on	  

•  Collec&ve	  Resolu&on	  
–  Two	  objects	  that	  are	  not	  very	  similar	  can	  become	  similar	  if	  their	  neighbors	  

are	  clustered	  together.	  	  
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Summary	  
•  Many	  similarity	  metrics	  for	  rela&onal	  data	  

–  Common	  Neighbors	  
–  Adamic/Adar	  
–  Katz	  
–  Personalized	  Page	  Rank	  
–  Simrank	  

•  Need	  collec&ve	  techniques	  for	  en&ty	  resolu&on	  on	  linked	  data	  
–  Rela&onal	  Clustering	  	  

•  Next	  Class	  
–  Collec&ve	  Resolu&on	  using	  Markov	  Logic	  
–  Scaling	  Collec&ve	  En&ty	  Resolu&on	  
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