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Recap:	
  Constraints	
  
•  Transi'vity:	
  	
  	
  

If	
  x	
  and	
  y	
  match,	
  y	
  and	
  z	
  match,	
  then	
  x	
  and	
  z	
  must	
  match	
  
–  Useful	
  in	
  deduplica&on	
  

•  Exclusivity:	
  	
  	
  	
  
If	
  x	
  matches	
  with	
  y,	
  then	
  z	
  cannot	
  match	
  with	
  y	
  
–  Useful	
  in	
  record	
  linkage	
  (matches	
  across	
  two	
  datasets)	
  
–  Each	
  dataset	
  does	
  not	
  have	
  any	
  duplicates.	
  

•  Rela'onal	
  Constraints:	
  
If	
  x	
  and	
  y	
  match,	
  then	
  z	
  and	
  w	
  should	
  match	
  	
  
–  If	
  movies	
  are	
  the	
  same,	
  then	
  directors	
  must	
  be	
  the	
  same	
  
–  (We	
  will	
  see	
  in	
  next	
  class)	
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Recap:	
  Constraint	
  Types	
  
Hard	
  Constraint	
   So8	
  Constraint	
  

Posi&ve	
  Evidence	
   Transi&vity:	
  x=y	
  &	
  y=z	
  =>	
  x=z	
  
	
  

Rela'onal:	
  If	
  x,	
  y	
  match	
  then	
  z,	
  w	
  are	
  
more	
  likely	
  to	
  match	
  
If	
  two	
  venues	
  match,	
  then	
  their	
  
papers	
  are	
  more	
  likely	
  to	
  match	
  

	
  

Nega&ve	
  Evidence	
   Exclusivity:	
  x	
  and	
  y	
  must	
  refer	
  
to	
  dis&nct	
  en&&es	
  
	
  
Rela'onal:	
  If	
  x,y	
  don’t	
  match	
  
then	
  z,w	
  cannot	
  match	
  
If	
  two	
  venues	
  don’t	
  match,	
  
then	
  their	
  papers	
  don’t	
  
match	
  

SoU	
  Exclusivity:	
  x	
  and	
  y	
  are	
  very	
  likely	
  
different	
  elements	
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Match	
  Dependencies	
  

When	
  matching	
  decisions	
  depend	
  on	
  other	
  
matching	
  decisions	
  (in	
  other	
  words,	
  matching	
  
decisions	
  are	
  not	
  made	
  independently	
  for	
  each	
  
pair),	
  we	
  refer	
  to	
  the	
  approach	
  as	
  collec9ve	
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This	
  Class	
  
•  Collec&ve	
  En&ty	
  Resolu&on	
  for	
  Rela&onal	
  Data	
  

–  Problem	
  Statement	
  
–  Mo&va&ng	
  Example	
  
–  Similarity	
  func&ons	
  for	
  Linked	
  Data	
  
–  Rela&onal	
  Clustering	
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Abstract	
  Problem	
  Statement	
  
Real	
  World	
   Digital	
  World	
  

A
I 

M
L 

D
B 



Deduplica&on	
  Problem	
  Statement	
  



Rela&onships	
  are	
  crucial	
  



This	
  Class	
  
•  Collec&ve	
  En&ty	
  Resolu&on	
  for	
  Rela&onal	
  Data	
  

–  Problem	
  Statement	
  
–  Mo&va&ng	
  Example	
  
–  Similarity	
  func&ons	
  for	
  Linked	
  Data	
  
–  Rela&onal	
  Clustering	
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before	
   aUer	
  

InfoVis	
  Co-­‐Author	
  Network	
  Fragment	
  



Rela&onal	
  Constraints	
  

Very	
  similar	
  names.	
  
Added	
  evidence	
  from	
  
shared	
  co-­‐authors	
  



Rela&onal	
  Constraints	
  

Very	
  similar	
  names	
  but	
  
no	
  shared	
  collaborators	
  



Rela&onal	
  Constraints	
  

Co-­‐authors	
  are	
  typically	
  
dis&nct	
  



Collec&ve	
  En&ty	
  Resolu&on	
  	
  

One	
  resolu&on	
  provides	
  
evidence	
  for	
  another	
  =>	
  
joint	
  resolu&on	
  



This	
  Class	
  
•  Collec&ve	
  En&ty	
  Resolu&on	
  for	
  Rela&onal	
  Data	
  

–  Problem	
  Statement	
  
–  Mo&va&ng	
  Example	
  
–  Similarity	
  func&ons	
  for	
  Linked	
  Data	
  
–  Rela&onal	
  Clustering	
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Rela&onal	
  Features	
  
•  There	
  are	
  a	
  variety	
  of	
  ways	
  of	
  improving	
  ER	
  performance	
  when	
  

data	
  is	
  richer	
  than	
  a	
  single	
  table/en&ty	
  type	
  

•  One	
  of	
  the	
  simplest	
  is	
  to	
  use	
  addi&onal	
  informa&on,	
  to	
  enrich	
  
model	
  with	
  	
  rela>onal	
  features	
  that	
  will	
  provide	
  richer	
  context	
  for	
  
matching	
  



Examples	
  of	
  rela&onal	
  features	
  
•  Value	
  of	
  edge	
  or	
  neighboring	
  a`ribute	
  (1-­‐1)	
  

•  Aggregates	
  (1-­‐many)	
  
–  Mode	
  (sum,	
  min,	
  max)	
  of	
  related	
  a`ribute	
  

•  Set	
  similarity	
  measures	
  to	
  compare	
  nodes	
  based	
  on	
  set	
  of	
  related	
  
nodes,	
  e.g.,	
  compare	
  neighborhoods	
  
–  Overlap	
  
–  Jaccard	
  coefficient	
  	
  
–  Average	
  similarity	
  between	
  set	
  members	
  



Preferen&al	
  A`achment	
  Score	
  

•  Based	
  on	
  studies,	
  e.g.	
  [Newman,	
  PRL01],	
  showing	
  that	
  people	
  
with	
  a	
  larger	
  number	
  of	
  exis&ng	
  rela&ons	
  are	
  more	
  likely	
  to	
  
ini&ate	
  new	
  ones.	
  

18	
  

[Liben-­‐Nowell	
  &	
  Kleinberg,	
  JASIST07]	
  

Set	
  of	
  a’s	
  neighbors	
  



Common	
  Neighbors	
  
•  Two	
  nodes	
  are	
  likely	
  to	
  be	
  connected	
  in	
  a	
  graph	
  if	
  they	
  share	
  a	
  

large	
  number	
  of	
  common	
  neighbors.	
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Can	
  be	
  any	
  kind	
  of	
  
shared	
  a`ributes	
  or	
  	
  
rela&onships	
  to	
  shared	
  
en&&es	
  	
  



Adamic/Adar	
  Measure	
  
•  Two	
  nodes	
  are	
  more	
  similar	
  if	
  they	
  share	
  more	
  items	
  that	
  are	
  

overall	
  less	
  frequent	
  

20	
  

[Adamic	
  &	
  Adar,	
  SN03]	
  

Overall	
  frequency	
  
in	
  the	
  data	
  Can	
  be	
  any	
  kind	
  of	
  

shared	
  a`ributes	
  or	
  	
  
rela&onships	
  to	
  shared	
  
en&&es	
  	
  



Katz	
  Score	
  
•  Two	
  objects	
  are	
  similar	
  if	
  they	
  are	
  connected	
  by	
  shorter	
  paths	
  

21	
  

Set	
  of	
  paths	
  between	
  
a	
  and	
  b	
  of	
  length	
  exactly	
  l 

Decay	
  factor	
  between	
  0	
  and	
  1	
  

¢  Since	
  expensive	
  to	
  compute,	
  oUen	
  use	
  approximate	
  Katz,	
  
assuming	
  some	
  max	
  path	
  length	
  of	
  k	
  



Personalized	
  Page	
  Rank	
  

•  Sta&onary	
  distribu&on	
  of	
  a	
  random	
  walk:	
  	
  
–  With	
  probability	
  (1-­‐c),	
  follow	
  a	
  random	
  outgoing	
  edge	
  
–  With	
  probability	
  c,	
  jump	
  to	
  the	
  target	
  node	
  ‘a’	
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SimRank	
  
•  “Two	
  objects	
  are	
  similar	
  if	
  they	
  are	
  related	
  to	
  similar	
  objects”	
  

•  Defined	
  as	
  the	
  unique	
  solu&on	
  to:	
  

•  Computed	
  by	
  itera&ng	
  to	
  convergence	
  
•  Ini&aliza&on	
  to	
  s(a,	
  b)	
  =	
  1	
  if	
  a=b	
  and	
  0	
  otherwise	
  

23	
  

[Jeh	
  &	
  Widom,	
  KDD02]	
  

Set	
  of	
  incoming	
  edges	
  into	
  a	
  

Decay	
  factor	
  between	
  0	
  and	
  1	
  



Intui&on	
  behind	
  Simrank	
  
•  	
  sim(a,b)	
  measures	
  how	
  soon	
  two	
  (reverse)	
  random	
  walks	
  star&ng	
  

from	
  a	
  and	
  b	
  meet	
  at	
  the	
  same	
  node.	
  

•  Works	
  best	
  for	
  bipar&te	
  graphs	
  (having	
  two	
  types	
  of	
  en&&es)	
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Intui&on	
  behind	
  Simrank	
  
Expected	
  Distance	
  

–  	
  d(u,v)	
  	
  =	
  	
  0,	
  if	
  u	
  =	
  v	
  

–  	
  t:	
  tour	
  (path	
  with	
  cycles)	
  star&ng	
  at	
  u	
  and	
  ending	
  at	
  v	
  
–  	
  t	
  =	
  [w1,	
  w2,	
  …,	
  wk]	
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A1

A

...

A

B

B’

m

Figure 3: Little information is available for A, which is cited
only by B.

figure, Am is shown as a better match for A than A1, since Am’s
other citer is B0, which is similar to B.
The example demonstrates the case where we are interested in

documents similar to document A about which there is little infor-
mation. We can also consider the complementary case where we
are interested in a general document C, and ask whether A should
be included on a list of documents most similar to C. In our ex-
ample A has only one in-citation, and it may be the case that this
is an “outlier” citation. It would be safer to consider only docu-
ments for which we have more information. On the other hand, we
don’t want to eliminate unpopular documents from consideration or
popular documents to be favored for every query. If we eliminated
the constant factor 1

|I(b)| from equation (1), then documents b with
a very high popularity would have a high similarity score with any
other document a. As a compromise, we can weigh the final results
of the algorithm by popularity, using the asymmetric formula

sP (a, b) = s(a, b) · |I(b)|P (6)

where the constant P 2 (0, 1) is a parameter adjustable by the end
user. In Section 6 we discuss experimentation with this weighting
scheme.
Note that although we have used documents as examples of un-

popular objects, the same ideas apply in other domains, such as to
items rarely purchased, courses rarely taken, etc.

5 Random Surfer-Pairs Model
As discussed in Section 4.2, it is important to have an intuition for
the similarity scores produced by the algorithm. For this we provide
an intuitive model based on “random surfers”. (Readers not inter-
ested in underlying models may proceed directly to Section 6 on
experimental results.) We will show that the SimRank score s(a, b)
measures how soon two random surfers are expected to meet at the
same node if they started at nodes a and b and randomly walked the
graph backwards. The details involve some complexity, and are de-
veloped in the remainder of this section. The model is presented in
the context of general directed graphs; variations for bipartite Sim-
Rank (Section 4.3) are easy to derive and we leave them to the inter-
ested reader.

5.1 Expected Distance

Let H be any strongly connected graph (in which a path exists be-
tween every two nodes). Let u, v be any two nodes inH . We define

v w

u

(a) (b) (c)

Figure 4: Sample graph structures.

the expected distance2 d(u, v) from u to v as

d(u, v) =

X

t:u v

P [t]l(t) (7)

The summation is taken over all tours t (paths that may have cycles)
which start at u and end at v, and do not touch v except at the end.
For a tour t = hw1, . . . , wki, the length l(t) of t is k�1, the number
of edges in t. The probability P [t] of traveling t is

Qk�1
i=1

1
|O(wi)|

, or
1 if l(t) = 0. Note that the case where u = v, for which d(u, v) =

0, is a special case of (7): only one tour is in the summation, and it
has length 0. Because of the presence of cycles, there are infinitely
many tours from u to v, and (7) is an (convergent) infinite sum. The
expected distance from u to v is exactly the expected number of
steps a random surfer, who at each step follows a random out-edge,
would take before he first reaches v, starting from u.

5.2 Expected Meeting Distance

For our model, we extend the concept of expected distance to ex-
pected meeting distance (EMD). Intuitively, the expected meeting
distancem(a, b) between a and b is the expected number of steps re-
quired before two surfers, one starting at a and the other at b, would
meet if they walked (randomly) in lock-step. The EMD is symmetric
by definition. Before formalizing EMD, let us consider a few exam-
ples. The EMD between any two distinct nodes in Figure 4(a) is
(informally)1, since two surfers walking the loop in lock-step will
follow each other forever. In Figure 4(b),m(u, v) = m(u, w) = 1
(surfers will never meet) andm(v, w) = 1 (surfers meet on the next
step), suggesting that v and w are much more similar to each other
than u is to v or w. Between two distinct nodes of 4(c), the EMD is
3, suggesting a lower similarity than between v and w in 4(b), but
higher than between u and v (or u and w).
To define EMD formally in G, we use the derived graph G2 of

node-pairs. Each node (a, b) of V 2 can be thought of as the present
state of a pair of surfers in V , where an edge from (a, b) to (c, d)

in G2 says that in the original graph G, one surfer can move from
a to c while the other moves from b to d. A tour in G2 of length n
represents a pair of tours in G also having length n.
The EMD m(a, b) is simply the expected distance in G2 from

(a, b) to any singleton node (x, x) 2 V 2, since singleton nodes in
G2 represent states where both surfers are at the same node. More
precisely,

m(a, b) =

X

t:(a,b) (x,x)

P [t]l(t) (8)

2In the literature this quantity, in undirected graphs, is known as the hit-
ting time [14], but we will develop the idea differently and so choose to use
another name for our presentation.
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Intui&on	
  behind	
  Simrank	
  
Expected	
  Mee'ng	
  Distance	
  
•  expected	
  number	
  of	
  steps	
  	
  taken	
  for	
  2	
  random	
  walks	
  star&ng	
  

from	
  a	
  and	
  b	
  to	
  meet.	
  

•  Expected	
  mee&ng	
  distance	
  in	
  G	
  is	
  equivalent	
  to	
  expected	
  
distance	
  in	
  G2.	
  
–  Consider	
  a	
  graph	
  G2	
  =	
  (V	
  x	
  V,	
  E2)	
  
–  There	
  is	
  an	
  edge	
  between	
  (a,b)	
  and	
  (c,d)	
  in	
  E2,	
  if	
  there	
  are	
  edges	
  (a,c)	
  and	
  

(b,d)	
  in	
  E	
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Figure 3: Little information is available for A, which is cited
only by B.

figure, Am is shown as a better match for A than A1, since Am’s
other citer is B0, which is similar to B.
The example demonstrates the case where we are interested in

documents similar to document A about which there is little infor-
mation. We can also consider the complementary case where we
are interested in a general document C, and ask whether A should
be included on a list of documents most similar to C. In our ex-
ample A has only one in-citation, and it may be the case that this
is an “outlier” citation. It would be safer to consider only docu-
ments for which we have more information. On the other hand, we
don’t want to eliminate unpopular documents from consideration or
popular documents to be favored for every query. If we eliminated
the constant factor 1

|I(b)| from equation (1), then documents b with
a very high popularity would have a high similarity score with any
other document a. As a compromise, we can weigh the final results
of the algorithm by popularity, using the asymmetric formula

sP (a, b) = s(a, b) · |I(b)|P (6)

where the constant P 2 (0, 1) is a parameter adjustable by the end
user. In Section 6 we discuss experimentation with this weighting
scheme.
Note that although we have used documents as examples of un-

popular objects, the same ideas apply in other domains, such as to
items rarely purchased, courses rarely taken, etc.

5 Random Surfer-Pairs Model
As discussed in Section 4.2, it is important to have an intuition for
the similarity scores produced by the algorithm. For this we provide
an intuitive model based on “random surfers”. (Readers not inter-
ested in underlying models may proceed directly to Section 6 on
experimental results.) We will show that the SimRank score s(a, b)
measures how soon two random surfers are expected to meet at the
same node if they started at nodes a and b and randomly walked the
graph backwards. The details involve some complexity, and are de-
veloped in the remainder of this section. The model is presented in
the context of general directed graphs; variations for bipartite Sim-
Rank (Section 4.3) are easy to derive and we leave them to the inter-
ested reader.

5.1 Expected Distance

Let H be any strongly connected graph (in which a path exists be-
tween every two nodes). Let u, v be any two nodes inH . We define

v w

u

(a) (b) (c)

Figure 4: Sample graph structures.

the expected distance2 d(u, v) from u to v as

d(u, v) =

X

t:u v

P [t]l(t) (7)

The summation is taken over all tours t (paths that may have cycles)
which start at u and end at v, and do not touch v except at the end.
For a tour t = hw1, . . . , wki, the length l(t) of t is k�1, the number
of edges in t. The probability P [t] of traveling t is

Qk�1
i=1

1
|O(wi)|

, or
1 if l(t) = 0. Note that the case where u = v, for which d(u, v) =

0, is a special case of (7): only one tour is in the summation, and it
has length 0. Because of the presence of cycles, there are infinitely
many tours from u to v, and (7) is an (convergent) infinite sum. The
expected distance from u to v is exactly the expected number of
steps a random surfer, who at each step follows a random out-edge,
would take before he first reaches v, starting from u.

5.2 Expected Meeting Distance

For our model, we extend the concept of expected distance to ex-
pected meeting distance (EMD). Intuitively, the expected meeting
distancem(a, b) between a and b is the expected number of steps re-
quired before two surfers, one starting at a and the other at b, would
meet if they walked (randomly) in lock-step. The EMD is symmetric
by definition. Before formalizing EMD, let us consider a few exam-
ples. The EMD between any two distinct nodes in Figure 4(a) is
(informally)1, since two surfers walking the loop in lock-step will
follow each other forever. In Figure 4(b),m(u, v) = m(u, w) = 1
(surfers will never meet) andm(v, w) = 1 (surfers meet on the next
step), suggesting that v and w are much more similar to each other
than u is to v or w. Between two distinct nodes of 4(c), the EMD is
3, suggesting a lower similarity than between v and w in 4(b), but
higher than between u and v (or u and w).
To define EMD formally in G, we use the derived graph G2 of

node-pairs. Each node (a, b) of V 2 can be thought of as the present
state of a pair of surfers in V , where an edge from (a, b) to (c, d)

in G2 says that in the original graph G, one surfer can move from
a to c while the other moves from b to d. A tour in G2 of length n
represents a pair of tours in G also having length n.
The EMD m(a, b) is simply the expected distance in G2 from

(a, b) to any singleton node (x, x) 2 V 2, since singleton nodes in
G2 represent states where both surfers are at the same node. More
precisely,

m(a, b) =

X

t:(a,b) (x,x)

P [t]l(t) (8)

2In the literature this quantity, in undirected graphs, is known as the hit-
ting time [14], but we will develop the idea differently and so choose to use
another name for our presentation.
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  m(u,v)	
  	
  =	
  	
  ∞	
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Figure 3: Little information is available for A, which is cited
only by B.

figure, Am is shown as a better match for A than A1, since Am’s
other citer is B0, which is similar to B.
The example demonstrates the case where we are interested in

documents similar to document A about which there is little infor-
mation. We can also consider the complementary case where we
are interested in a general document C, and ask whether A should
be included on a list of documents most similar to C. In our ex-
ample A has only one in-citation, and it may be the case that this
is an “outlier” citation. It would be safer to consider only docu-
ments for which we have more information. On the other hand, we
don’t want to eliminate unpopular documents from consideration or
popular documents to be favored for every query. If we eliminated
the constant factor 1

|I(b)| from equation (1), then documents b with
a very high popularity would have a high similarity score with any
other document a. As a compromise, we can weigh the final results
of the algorithm by popularity, using the asymmetric formula

sP (a, b) = s(a, b) · |I(b)|P (6)

where the constant P 2 (0, 1) is a parameter adjustable by the end
user. In Section 6 we discuss experimentation with this weighting
scheme.
Note that although we have used documents as examples of un-

popular objects, the same ideas apply in other domains, such as to
items rarely purchased, courses rarely taken, etc.

5 Random Surfer-Pairs Model
As discussed in Section 4.2, it is important to have an intuition for
the similarity scores produced by the algorithm. For this we provide
an intuitive model based on “random surfers”. (Readers not inter-
ested in underlying models may proceed directly to Section 6 on
experimental results.) We will show that the SimRank score s(a, b)
measures how soon two random surfers are expected to meet at the
same node if they started at nodes a and b and randomly walked the
graph backwards. The details involve some complexity, and are de-
veloped in the remainder of this section. The model is presented in
the context of general directed graphs; variations for bipartite Sim-
Rank (Section 4.3) are easy to derive and we leave them to the inter-
ested reader.

5.1 Expected Distance

Let H be any strongly connected graph (in which a path exists be-
tween every two nodes). Let u, v be any two nodes inH . We define

v w

u

(a) (b) (c)

Figure 4: Sample graph structures.

the expected distance2 d(u, v) from u to v as

d(u, v) =

X

t:u v

P [t]l(t) (7)

The summation is taken over all tours t (paths that may have cycles)
which start at u and end at v, and do not touch v except at the end.
For a tour t = hw1, . . . , wki, the length l(t) of t is k�1, the number
of edges in t. The probability P [t] of traveling t is

Qk�1
i=1

1
|O(wi)|

, or
1 if l(t) = 0. Note that the case where u = v, for which d(u, v) =

0, is a special case of (7): only one tour is in the summation, and it
has length 0. Because of the presence of cycles, there are infinitely
many tours from u to v, and (7) is an (convergent) infinite sum. The
expected distance from u to v is exactly the expected number of
steps a random surfer, who at each step follows a random out-edge,
would take before he first reaches v, starting from u.

5.2 Expected Meeting Distance

For our model, we extend the concept of expected distance to ex-
pected meeting distance (EMD). Intuitively, the expected meeting
distancem(a, b) between a and b is the expected number of steps re-
quired before two surfers, one starting at a and the other at b, would
meet if they walked (randomly) in lock-step. The EMD is symmetric
by definition. Before formalizing EMD, let us consider a few exam-
ples. The EMD between any two distinct nodes in Figure 4(a) is
(informally)1, since two surfers walking the loop in lock-step will
follow each other forever. In Figure 4(b),m(u, v) = m(u, w) = 1
(surfers will never meet) andm(v, w) = 1 (surfers meet on the next
step), suggesting that v and w are much more similar to each other
than u is to v or w. Between two distinct nodes of 4(c), the EMD is
3, suggesting a lower similarity than between v and w in 4(b), but
higher than between u and v (or u and w).
To define EMD formally in G, we use the derived graph G2 of

node-pairs. Each node (a, b) of V 2 can be thought of as the present
state of a pair of surfers in V , where an edge from (a, b) to (c, d)

in G2 says that in the original graph G, one surfer can move from
a to c while the other moves from b to d. A tour in G2 of length n
represents a pair of tours in G also having length n.
The EMD m(a, b) is simply the expected distance in G2 from

(a, b) to any singleton node (x, x) 2 V 2, since singleton nodes in
G2 represent states where both surfers are at the same node. More
precisely,

m(a, b) =

X

t:(a,b) (x,x)

P [t]l(t) (8)

2In the literature this quantity, in undirected graphs, is known as the hit-
ting time [14], but we will develop the idea differently and so choose to use
another name for our presentation.
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Figure 3: Little information is available for A, which is cited
only by B.

figure, Am is shown as a better match for A than A1, since Am’s
other citer is B0, which is similar to B.
The example demonstrates the case where we are interested in

documents similar to document A about which there is little infor-
mation. We can also consider the complementary case where we
are interested in a general document C, and ask whether A should
be included on a list of documents most similar to C. In our ex-
ample A has only one in-citation, and it may be the case that this
is an “outlier” citation. It would be safer to consider only docu-
ments for which we have more information. On the other hand, we
don’t want to eliminate unpopular documents from consideration or
popular documents to be favored for every query. If we eliminated
the constant factor 1

|I(b)| from equation (1), then documents b with
a very high popularity would have a high similarity score with any
other document a. As a compromise, we can weigh the final results
of the algorithm by popularity, using the asymmetric formula

sP (a, b) = s(a, b) · |I(b)|P (6)

where the constant P 2 (0, 1) is a parameter adjustable by the end
user. In Section 6 we discuss experimentation with this weighting
scheme.
Note that although we have used documents as examples of un-

popular objects, the same ideas apply in other domains, such as to
items rarely purchased, courses rarely taken, etc.

5 Random Surfer-Pairs Model
As discussed in Section 4.2, it is important to have an intuition for
the similarity scores produced by the algorithm. For this we provide
an intuitive model based on “random surfers”. (Readers not inter-
ested in underlying models may proceed directly to Section 6 on
experimental results.) We will show that the SimRank score s(a, b)
measures how soon two random surfers are expected to meet at the
same node if they started at nodes a and b and randomly walked the
graph backwards. The details involve some complexity, and are de-
veloped in the remainder of this section. The model is presented in
the context of general directed graphs; variations for bipartite Sim-
Rank (Section 4.3) are easy to derive and we leave them to the inter-
ested reader.

5.1 Expected Distance

Let H be any strongly connected graph (in which a path exists be-
tween every two nodes). Let u, v be any two nodes inH . We define
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X

t:u v

P [t]l(t) (7)

The summation is taken over all tours t (paths that may have cycles)
which start at u and end at v, and do not touch v except at the end.
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0, is a special case of (7): only one tour is in the summation, and it
has length 0. Because of the presence of cycles, there are infinitely
many tours from u to v, and (7) is an (convergent) infinite sum. The
expected distance from u to v is exactly the expected number of
steps a random surfer, who at each step follows a random out-edge,
would take before he first reaches v, starting from u.
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For our model, we extend the concept of expected distance to ex-
pected meeting distance (EMD). Intuitively, the expected meeting
distancem(a, b) between a and b is the expected number of steps re-
quired before two surfers, one starting at a and the other at b, would
meet if they walked (randomly) in lock-step. The EMD is symmetric
by definition. Before formalizing EMD, let us consider a few exam-
ples. The EMD between any two distinct nodes in Figure 4(a) is
(informally)1, since two surfers walking the loop in lock-step will
follow each other forever. In Figure 4(b),m(u, v) = m(u, w) = 1
(surfers will never meet) andm(v, w) = 1 (surfers meet on the next
step), suggesting that v and w are much more similar to each other
than u is to v or w. Between two distinct nodes of 4(c), the EMD is
3, suggesting a lower similarity than between v and w in 4(b), but
higher than between u and v (or u and w).
To define EMD formally in G, we use the derived graph G2 of

node-pairs. Each node (a, b) of V 2 can be thought of as the present
state of a pair of surfers in V , where an edge from (a, b) to (c, d)

in G2 says that in the original graph G, one surfer can move from
a to c while the other moves from b to d. A tour in G2 of length n
represents a pair of tours in G also having length n.
The EMD m(a, b) is simply the expected distance in G2 from

(a, b) to any singleton node (x, x) 2 V 2, since singleton nodes in
G2 represent states where both surfers are at the same node. More
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2In the literature this quantity, in undirected graphs, is known as the hit-
ting time [14], but we will develop the idea differently and so choose to use
another name for our presentation.
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are interested in a general document C, and ask whether A should
be included on a list of documents most similar to C. In our ex-
ample A has only one in-citation, and it may be the case that this
is an “outlier” citation. It would be safer to consider only docu-
ments for which we have more information. On the other hand, we
don’t want to eliminate unpopular documents from consideration or
popular documents to be favored for every query. If we eliminated
the constant factor 1

|I(b)| from equation (1), then documents b with
a very high popularity would have a high similarity score with any
other document a. As a compromise, we can weigh the final results
of the algorithm by popularity, using the asymmetric formula

sP (a, b) = s(a, b) · |I(b)|P (6)

where the constant P 2 (0, 1) is a parameter adjustable by the end
user. In Section 6 we discuss experimentation with this weighting
scheme.
Note that although we have used documents as examples of un-

popular objects, the same ideas apply in other domains, such as to
items rarely purchased, courses rarely taken, etc.

5 Random Surfer-Pairs Model
As discussed in Section 4.2, it is important to have an intuition for
the similarity scores produced by the algorithm. For this we provide
an intuitive model based on “random surfers”. (Readers not inter-
ested in underlying models may proceed directly to Section 6 on
experimental results.) We will show that the SimRank score s(a, b)
measures how soon two random surfers are expected to meet at the
same node if they started at nodes a and b and randomly walked the
graph backwards. The details involve some complexity, and are de-
veloped in the remainder of this section. The model is presented in
the context of general directed graphs; variations for bipartite Sim-
Rank (Section 4.3) are easy to derive and we leave them to the inter-
ested reader.
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Let H be any strongly connected graph (in which a path exists be-
tween every two nodes). Let u, v be any two nodes inH . We define
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the expected distance2 d(u, v) from u to v as

d(u, v) =
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P [t]l(t) (7)

The summation is taken over all tours t (paths that may have cycles)
which start at u and end at v, and do not touch v except at the end.
For a tour t = hw1, . . . , wki, the length l(t) of t is k�1, the number
of edges in t. The probability P [t] of traveling t is
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, or
1 if l(t) = 0. Note that the case where u = v, for which d(u, v) =

0, is a special case of (7): only one tour is in the summation, and it
has length 0. Because of the presence of cycles, there are infinitely
many tours from u to v, and (7) is an (convergent) infinite sum. The
expected distance from u to v is exactly the expected number of
steps a random surfer, who at each step follows a random out-edge,
would take before he first reaches v, starting from u.

5.2 Expected Meeting Distance

For our model, we extend the concept of expected distance to ex-
pected meeting distance (EMD). Intuitively, the expected meeting
distancem(a, b) between a and b is the expected number of steps re-
quired before two surfers, one starting at a and the other at b, would
meet if they walked (randomly) in lock-step. The EMD is symmetric
by definition. Before formalizing EMD, let us consider a few exam-
ples. The EMD between any two distinct nodes in Figure 4(a) is
(informally)1, since two surfers walking the loop in lock-step will
follow each other forever. In Figure 4(b),m(u, v) = m(u, w) = 1
(surfers will never meet) andm(v, w) = 1 (surfers meet on the next
step), suggesting that v and w are much more similar to each other
than u is to v or w. Between two distinct nodes of 4(c), the EMD is
3, suggesting a lower similarity than between v and w in 4(b), but
higher than between u and v (or u and w).
To define EMD formally in G, we use the derived graph G2 of

node-pairs. Each node (a, b) of V 2 can be thought of as the present
state of a pair of surfers in V , where an edge from (a, b) to (c, d)

in G2 says that in the original graph G, one surfer can move from
a to c while the other moves from b to d. A tour in G2 of length n
represents a pair of tours in G also having length n.
The EMD m(a, b) is simply the expected distance in G2 from

(a, b) to any singleton node (x, x) 2 V 2, since singleton nodes in
G2 represent states where both surfers are at the same node. More
precisely,

m(a, b) =
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t:(a,b) (x,x)

P [t]l(t) (8)

2In the literature this quantity, in undirected graphs, is known as the hit-
ting time [14], but we will develop the idea differently and so choose to use
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The sum is taken over all tours t starting from (a, b) which touch a
singleton node at the end and only at the end. Unfortunately,G2 may
not always be strongly connected (even if G is), and in such cases
there may be no tours t for (a, b) in the summation (8). The intuitive
definition form(a, b) in this case is1, as in Figure 4(b), discussed
above. However, this definition would cause problems in defining
distances for nodes from which some tours lead to singleton nodes
while others lead to (a, b). We discuss a solution to this problem in
the next section.

5.3 Expected-f Meeting Distance
There are various ways to circumvent the “infinite EMD” problem
discussed in the previous section. For example, we can make each
surfer “teleport” with a small probability to a random node in the
graph (the solution suggested for PageRank in [16]). Our approach,
which as we will see yields equations equivalent to the SimRank
equations, is to map all distances to a finite interval: instead of com-
puting expected length l(t) of a tour, we can compute the expected
f(l(t)), for a nonnegative, monotonic function f which is bounded
on the domain [0,1). With this replacement we get the expected-
f meeting distance. For our purposes, we choose the exponential
function f(z) = cz , where c 2 (0, 1) is a constant. The benefits of
this choice of f , which has values in the range (0, 1] over domain
[0,1), are:
• Equations generated are simple and easy to solve.
• Closer nodes have a lower score (meeting distances of 0 go to 1

and distances of1 go to 0), matching our intuition of similarity.
We define s0

(a, b), the similarity between a and b in G based on
expected-f meeting distance, as

s0
(a, b) =

X

t:(a,b) (x,x)

P [t]cl(t) (9)

where c is a constant in (0, 1). The summation is taken to be 0 if
there is no tour from (a, b) to any singleton nodes. Note from (9)
that s0

(a, b) 2 [0, 1] for all a, b, and that s0
(a, b) = 1 if a = b.

Let us consider these similarity scores on Figure 4 usingC = 0.8
as an example. Between any two distinct nodes a, b in Figure 4(a),
s0

(a, b) = 0. In Figure 4(b), s0
(v, w) = 0.8 while s0

(u, v) =

s0
(u, w) = 0. For any two distinct nodes in the complete graph of

Figure 4(c), s0
(a, b) ⇡ 0.47, a lower score than between v and w in

Figure 4(b).

5.4 Equivalence to SimRank
We now show that s0

(⇤, ⇤) exactly models our original definition
of SimRank scores by showing that s0

(⇤, ⇤) satisfies the SimRank
equations (1). To ease presentation, let us assume that all edges in
our graph G have been reversed, so following an edge is equivalent
to moving one step backwards in the original graph.3
First, to aid in understanding, we give an intuitive but infor-

mal argument about the expected distance d(u, v) in a graph; the
same ideas can be applied to the expected-f meeting distance. Sup-
pose a surfer is at u 2 V . At the next time step, he chooses
one of O1(u), . . . , O|O(u)|(u), each with probability 1

|O(u)| . Upon

3Had we written equation (1) in terms of out-neighbors instead of in-
neighbors, as may be appropriate in some domains, this step would not be
necessary.

choosing Oi(u), the expected number of steps he will still have to
travel is d(Oi(u), v) (the base case is when Oi(u) = v, for which
d(Oi(u), v) = 0). Accounting for the step he travels to get to
Oi(u), we get:

d(u, v) = 1 +

1

|O(u)|

|O(u)|X

i=1

d(Oi(u), v)

With this intuition in mind, we derive similar recursive equations
for s0

(a, b) which will show that s0
(a, b) = s(a, b). If a = b then

s0
(a, b) = s(a, b) = 1. If there is no path in G2 from (a, b) to any

singleton nodes, in which case s0
(a, b) = 0, it is easy to see from

equation (5) that s(a, b) = 0 as well, since no similarity would flow
to (a, b) (recall that edges have been reversed). Otherwise, consider
the tours t from (a, b) to a singleton node in which the first step is to
the out-neighbor Oz((a, b)). There is a one-to-one correspondence
between such t and tours t0 from Oz((a, b)) to a singleton node:
for each t0 we may derive a corresponding t by appending the edge
h(a, b), Oz((a, b))i at the beginning. Let T be the bijection that
takes each t0 to the corresponding t. If the length of t0 is l, then the
length of t = T (t0) is l + 1. Moreover, the probability of traveling t
is P [t] =

1
|O((a,b))|P [t0] =

1
|O(a)||O(b)|P [t0]. We can now split the

sum in (9) according to the first step of the tour t to write

s0
(a, b) =

|O((a,b))|X

z=1

X

t0: Oz((a,b)) (x,x)

P [T (t0)]cl(T (t0))

=

|O((a,b))|X

z=1

X

t0: Oz((a,b)) (x,x)

1

|O(a)||O(b)|P [t0]cl(t0)+1

=

c
|O(a)||O(b)|

|O((a,b))|X

z=1

X

t0: Oz((a,b)) (x,x)

P [t0]cl(t)

=

c
|O(a)||O(b)|

|O(a)|X

i=1

|O(b)|X

j=1

s0
(Oi(a), Oj(b)) (10)

Equation (10) is identical to the SimRank equation (1) with c =

C and in-edges swapped for out-edges. Since the solution to (1)
is unique, s0

(a, b) = s(a, b) for all a, b 2 V . Thus we have the
following theorem.

Theorem. The SimRank score, with parameter C, between two
nodes is their expected-f meeting distance traveling back-edges, for
f(z) = Cz .

Thus, two nodes with a high SimRank score can be thought of as
being “close” to a common “source” of similarity.

6 Experimental Results
We have proposed an algorithm for computing SimRank similarity
scores between nodes of a graph, a mathematical property that de-
pends only on the graph structure and can be computed in any graph.
In this section, we report on some preliminary experiments, whose
primary purpose is to show that SimRank scores do in fact refine
simpler notions of structural similarity for graph structures derived
from practical data sets. The experiments also illustrate the effects
of varying the parameters of the algorithm. Although performance
and scalability issues obviously are extremely important, they are
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1.  Find	
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  similar	
  can	
  become	
  similar	
  if	
  their	
  neighbors	
  

are	
  clustered	
  together.	
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Summary	
  
•  Many	
  similarity	
  metrics	
  for	
  rela&onal	
  data	
  

–  Common	
  Neighbors	
  
–  Adamic/Adar	
  
–  Katz	
  
–  Personalized	
  Page	
  Rank	
  
–  Simrank	
  

•  Need	
  collec&ve	
  techniques	
  for	
  en&ty	
  resolu&on	
  on	
  linked	
  data	
  
–  Rela&onal	
  Clustering	
  	
  

•  Next	
  Class	
  
–  Collec&ve	
  Resolu&on	
  using	
  Markov	
  Logic	
  
–  Scaling	
  Collec&ve	
  En&ty	
  Resolu&on	
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