Online aggregation &
Sampling from Joins

CompSci 590.02
Instructor: Ashwin Machanavajjhala

Outline

* Online Aggregation

* Ripple Joins

* On the hardness of sampling from Joins

Online Aggregation

* Most systems compute aggregated like averages/counts/
etc. exactly.

* But aggregates only provide a “summary-view” of the
data.

 Why wait for an aggregate computation on the entire
data?

Online Aggregation

 Postgres 95 Online Aggregation Interface =] B3

AVG Confidence Interval

g‘ 2.6336 25 0.0652539

14% downe y-

Examples of Queries

e Select Sum(Salary) From R

DISTINCT

e Select Count(DISTINCT hashtags) from T

GroupBy

e Select Average(Grade) from STable GroupBy CourselD

JOIN
e Select Sum(Grade*Difficulty) from STable, Course

Example Scenarios

 Compute the number of individuals in the table that
satisfy function F, where F is a computationally intensive
property.
— Running the query on the entire data takes O(nf), where f is the
time for checking F on one record.

— We can get an approximate answer much faster ...

Example Scenarios

 Compute the sum of all elements in a database, which is
partitioned on k machines.
— Compute sum on each machine Si, and then add up all the Si’s

— Time taken to compute aggregate = max(time taken by one
machine)

— |If a machine fails ...

Example Scenarios

* Find the number of people in database D1 also appears
in database D2

— Exact answer needs checking |D1]|.|D2| pairs of records.

— Can we get an approximate answer faster?

Aggregations on a single table

. Read the records of the table in a random order

. Maintain a running estimate of the required aggregate

. Compute confidence bounds on the error in the running
estimate.

Random access

Random 1/Os are expensive

Heap Scans
— Heaps maintain the data in the order in which they are inserted

— If insertion order is not correlated with values, then this can be
used instead of a true random ordering

Index Scans

— If index is on an attribute that is not the same as the
aggregated column

Sampling from indexes
— From previous class

Group-By

E.g., Select Avg(Salary) from R GroupBy Department

Standard technique
— Sort the relation by the grouping attribute

— Compute the within group aggregate by scanning the sorted
output

Sorting is a blocking operation

Alternative : Hashing

Running Estimate

If N is the number of tuples in the data
If nis the number of tuples seen ...

SUM : N/n (current sum)
COUNT: N/n (current count)
AVG : 1/n (current sum)

Confidence bounds

Assuming the input tuples are randomly chosen.

If Xi is the random variable corresponding to the ith tuple,
then X1, X2, ... are independent random variables.

P{|Yn - u| >€e}< 2 exp{-2ne? / (b-a)?}

Where

* Ynis the running estimate after seeing n elements
 nisthe actual aggregate

* [3,b]: range of the values in the database

Online Aggregation over Joins

* How to generate a random ordering of pairs of tuples
from the Join of a relation?

— Option 1: Compute the join and then read the output of the
join in a random order — BLOCKING!

— Option 2: Nested Loop Join (over random orderings of the two
tables)

Nested Loop Join

Inner Relation

Outer >
Relation

Nested Loop Join

Inner Relation

Unnecessary work is done if:

- Values in the inner relation are roughly the same
Outer - Output of the aggregate is not very sensitive to
Relation the values in the inner relation

Ripple Join

Inner Relation

&8
&8

8 K

Read x records from each table, and
compute the join on these records.

Outer
Relation

Ripple Join

Inner Relation

Read x records from each table, and
compute the join on these records.

8 X
8 8K
8 X
¥ 8K

Outer

Relation

Outer
Relation

Ripple Join

Inner Relation

K &K
8 8K 8 &
X X
8 & 8 &
X 8K
8 & 8 &

Read x records from each table, and
compute the join on these records.

Online aggregation with Joins

 The output tuples are no longer independent samples
from the underlying distribution

— Why?

Difficulty of Join Sampling

Sample(Join(R,S)) # Join(Sample(R), Sample(S))

R: {(a, x0), (b, x1), (b,x2), ..., (b,xn)}
S: {(b,y0), (a,y1), (a,y2), ..., (a,yn)}

In R x S: Half the records have ‘a’ and half the records
have ‘b’

In Sample(R): probability ‘a” appears is very small.

Using statistics

* If we know for each tuple t € R, how many tuples it joins
with in S (call it ng(t))

* Pickarandom tupleteR
* Include it with probability proportional to n¢(t)

Summary

* Online aggregation helps provide approximate answers
without waiting for the exact answer

* Requires iterating over a random order of the data

 Sampling over Joins is difficult.

