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Summary 

Defining protein complexes is critical to virtually all aspects of cell biology. Two recent 

affinity purification/mass spectrometry studies in Saccharomyces cerevisiae have vastly 

increased the available protein interaction data. The practical utility of such high-

throughput interaction sets, however, is substantially decreased by the presence of false 

positives. Here we create a novel probabilistic metric that takes advantage of the high 

density of these data, including both the presence and absence of individual associations, 

to provide a measure of the relative confidence of each potential protein-protein 

interaction. This analysis largely overcomes the noise inherent in high-throughput 

immunoprecipitation experiments. For example, of the 12,122 binary interactions in the 

general repository of interaction data (BioGRID) derived from these two studies, we 

mark 7,504 as being of substantially lower confidence. Additionally, applying our metric 

and a stringent cutoff identifies a set of 9,074 interactions (including 4,456 which were 

not among the 12,122 interactions) with accuracy comparable to that of conventional 

small-scale methodologies. Finally, we organize proteins into coherent multi-subunit 

complexes using hierarchical clustering. This work thus provides a highly accurate 

physical interaction map of yeast in a format that is readily accessible to the biological 

community. 
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Introduction 

Since most cellular functions are mediated by groups of physically associated 

proteins, or complexes that work in a coherent fashion, it is of great interest to 

systematically map protein-protein interactions (PPIs). In Saccharomyces cerevisiae, 

these physical connections have been defined in large-scale experiments using the yeast 

two-hybrid method (1, 2) as well as direct purification of complexes using affinity tags 

followed by mass spectrometry (MS) analyses. In 2002, two initial studies utilized the 

latter strategy on subsets of the proteome (3, 4). Ho et al. (4) employed an over-

expression strategy combined with a single affinity purification step while Gavin et al. (3) 

used a tandem affinity purification (TAP) system in which epitope-tagged proteins were 

expressed under normal physiological conditions. The use of an over-expression system 

may facilitate detection of weaker or more transitory associations between proteins or 

protein complexes, but might be less optimal for accurate definition of stoichiometric 

interactions. Indeed, the purification of proteins expressed under normal physiological 

conditions followed by mass spectrometry provided the best coverage and accuracy for 

detection of stable protein complexes (5). Based on these considerations, two separate 

groups interrogated the physical interactome of S. cerevisiae using this strategy (6, 7).  

Although a similar approach was used for protein purification and identification, 

the resulting datasets were subjected to different analytical methods to define PPIs and 

protein complexes. Gavin et al. exploited a “socio-affinity” scoring system that measures 

the log-ratio of the number of times two proteins are observed together, relative to what 

would be expected from their frequency in the dataset. Importantly, this approach takes 

advantage of not only direct bait-prey connections but also indirect prey-prey 
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relationships where two proteins are each identified as preys in a purification in which a 

third protein is used as bait. Krogan et al., on the other hand, used a synthesis of machine 

learning techniques including Bayesian networks and C4.5-based and Boosted Stump 

Decision Trees to define confidence scores for potential interactions based on direct bait-

prey observations. The two groups also used different clustering algorithms to define 

protein complexes from their PPI datasets. For example, Krogan et al. used a Markov 

clustering algorithm (8) for definition of protein complexes while Gavin et al. utilized a 

different clustering approach to define complexes, each consisting of groups of proteins 

termed “core”, “module” or “attachment”. “Modules” were intended to represent 

subcomplexes that are components of several distinct complexes, and “attachments” were 

factors less stably associated with stable “core” complexes. Although both of these 

individual datasets are of high quality, it is not obvious how discrepancies between them 

should be resolved, and each still contains a substantial number of false positive 

interactions which can compromise the utility of these data for guiding more focused 

studies. 

In this study, we have merged these two datasets into a single reliable collection 

of experimentally-based PPIs by analyzing the primary affinity purification data using a 

novel Purification Enrichment (PE) scoring system. Using a well-defined reference set of 

manually curated PPIs, we demonstrate that our consolidated dataset is of greater 

accuracy than the individual sets and is comparable to PPIs defined using more 

conventional small-scale methodologies. Although algorithms designed to detect multi-

protein complexes can be highly effective for extracting additional information from 

noisy and incomplete datasets, attempting to strictly define protein complexes may not be 

 - 4 

 by on February 16, 2007 
www.m

cponline.org
Downloaded from

 

http://www.mcponline.org


the optimal way to analyze such a high-confidence dataset. In particular, any partitioning 

analysis must either group together distinct complexes which share one or more subunits, 

or fail to correctly identify all of the components of such complexes. Additionally, weak 

interactions between proteins or protein complexes may be lost. In this work, we have 

subjected the entire high confidence PPI dataset to a relatively unbiased hierarchical 

clustering from which one can more easily identify shared components of distinct 

complexes as well as weak associations between complexes. We argue that this 

representation provides a convenient tool for biologists to gather information about a 

protein of interest rapidly. Finally, this depiction potentially mimics the in vivo 

environment: a continuum of weak associations between stable protein complexes. 
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Experimental Procedures 

Calculation of Purification Enrichment Scores 

Purification Enrichment (PE) scores were modeled after a discriminant function for a 

Bayes classifier (9) as a measure of the likelihood of observed experimental results given 

the hypothesis that an interaction is genuine relative to the likelihood of the same results 

if the interaction is not real. These scores incorporate ideas from the socio-affinity 

scoring system reported by Gavin et al. (6), but differ in several significant ways. First, 

these scores take into account not only positive evidence for an interaction contained in 

the identification of two proteins in the same purification, but also negative evidence 

against interactions wherein one protein fails to be identified as a prey when another is 

used as a bait. This negative evidence has typically not been used in previous interaction 

scoring techniques, and it can be particularly useful for distinguishing non-interacting 

pairs of proteins that share many interaction partners from pairs that do exist in stable 

complexes. Second, PE scores more powerfully exploit situations in which a particular 

bait protein was used in multiple separate purifications. Third, the PE scoring strategy 

uses a different model for the likelihood of observing a pair of proteins in the same 

purification if these proteins do not interact.  

 

PE scores were motivated by the probabilistic framework of a (Naïve) Bayes classifier. In 

a Bayes classifier, an estimate of the probability one hypothesis (here that an interaction 

is real) relative to the probability of a second hypothesis (here that the interaction is not 

real), given a set of observations, is calculated to determine which hypothesis is more 

likely. Both of these probabilities are calculated using Bayes’ Theorem, and a 
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discriminant function f is calculated as the log-ratio of these probabilities. An interaction 

is classified as real if f>0 and false if f<0 (9). The function f is defined as: 
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While the accuracy of a Bayes classifier will rely on an appriopriate value for 

P(true_PPI) and the correct value is not obvious, an incorrect choice of this value will 

not affect the ordering of scores for putative interactions. We therefore computed PE 

scores as a sum of the evidence supporting or disaffirming each potential interaction over 

all relevant purifications in the dataset. For a particular observation, this evidence was 

computed as an estimate of the corresponding term in the above sum: 

)_|(
)_|(log10 PPIfalsenobservatioP

PPItruenobservatioPEvidence nobservatio =  (1) 

A PE score of zero then indicates that no evidence for or against the validity of a 

particular interaction was collected (and in theory the probability that such an interaction 

is true should be equal to the prior estimate of P(true_PPI)). In particular, we considered 

two types of observations in the construction of PE scores: bait-prey observations when 

one of the proteins of interest was used as a bait and prey-prey observations when the two 

proteins of interest both appeared as preys in the purification of a third protein. As a 

result, similar to socio-affinity scores (6), PE scores can be written as a sum of direct 
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bait-prey components (S) and an indirect prey-prey component (M). Thus, for a potential 

interaction between proteins i and j: 

ijjiijij MSSPE ++=  

Here Sij measures evidence from purifications where protein i was used as bait, Sji 

measures evidence from purifications where protein j was used as bait, and Mij measures 

indirect evidence due to co-occurrence of proteins i and j as preys in the same 

purifications. Below we give detailed equations used to compute the S and M 

components: 
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where each value of k indicates a distinct purification in which protein i was used as bait 

and sijk represents the corresponding evidence computed using equation (1). The 

probabilities P(observation | true_PPI) and P(observation | true_PPI) used to define sijk 

were calculated based on estimates of two underlying probabilities: r representing the 

probability that a true association will be preserved and detected in a purification 

experiment and pijk representing the probability that a bait-prey pair will be observed for 

nonspecific reasons. Using these quantities, we calculate: 
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otherwise. Values for r and pijk could in principle be estimated in a number of ways. 

Here, we estimated r using the observed frequency of successful purification over a very 
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high confidence set of interactions (the intersection of MIPS complexes and MIPS small-

scale experiments). For the Krogan et al., Gavin et al., and Ho et al. data, this gave values 

of 0.51, 0.62, and 0.265, respectively. For pijk we used an estimate of the probability that 

a given bait-prey pair would be observed for nonspecific reasons at least once in the 

dataset, calculated using the Poisson distribution as: 

)exp(1 bait
i

prey
ikjijk nnfp =  

where is the number of preys identified in purification k with bait i, is the 

number of times protein i was used as bait, and f

prey
ikn bait

in

j is an estimate of the nonspecific 

frequency of occurrence of prey j in the dataset. The relative values of the fj are estimates 

of relative rates at which different preys occur nonspecifically (and can be considered 

measures of relative promiscuity), and the sum of the fj can be considered to be the 

fraction of all prey identifications which are nonspecific. Although alternate strategies 

could be used, for simplicity we allowed the sum of the fj to be one, and we computed fj 

as Bayesian posterior estimates based on the observed frequency of occurrence of preys 

in the dataset and the prior hypothesis that all preys occur nonspecifically with equal 

frequency: 
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Here, is the total number of observations of protein j as a prey, is the 

total number of observations of all preys, is the number of distinct preys 

observed, and n

obsprey
jn _ obsprey

totn _

preysdistinctn _

pseudo is a number of pseudocounts added for each prey which determines 

the weight given to the prior hypothesis. Values of 20, 10, and 5 were used for npseudo for 

the Krogan et al., Gavin et al., and Ho et al. datasets, respectively. The value of npseudo 
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was the only parameter adjusted to optimize the PE scoring system. Adjustments were 

done using the MIPS complexes as a reference, and for this reason results of all 

comparisons made using a reference set based on the MIPS complexes were duplicated 

using an independent reference set generated from the SGD complexes. 

The M component was calculated as: 

"=
k

ijkij mM  

where each value of k indicates one purification in which proteins i and j were 

simultaneously observed as preys. In this case, our approach differs slightly from the full 

Bayesian classifier approach, which would either sum over all purifications or sum over 

all purifications in which at least one of the two proteins was identified as a prey. We did 

not use a sum over all purifications because it would require an enormous number of 

calculations and because estimation of all of the relevant probabilities is itself a very 

difficult problem. We instead created an approximate implementation of equation (1) for 

mijk calculated only for observations where both preys were observed in the same 

purification. Significantly, we did not include a negative term for the case in which only 

one of the two proteins was observed as a prey in a purification. This was because two 

proteins can interact, yet also be components of alternate complexes. Our implementation 

was again based on estimates for two underlying probabilities. Here, we use r to represent 

the probability that a true association between proteins i and j will be preserved and 

detected during a purification experiment and pijk to represent the probability that proteins 

i and j will appear as preys in the same purification for nonspecific reasons. 
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We used the same estimate for r as calculated above, and for pijk we use an estimate of 

probability that proteins i and j will occur nonspecifically as preys in the same 

purification at least once in the dataset. This value for pijk is calculated using the Poisson 

distribution as: 

)exp(1 preyprey
totjiijk nffp =  

where fi and fj are computed as described above, and is the total number of prey-

prey pairs observed in the dataset. 

preyprey
totn 

The Krogan et al. and Gavin et al. data were combined by computing a score for each 

putative interaction independently over each dataset and adding them as: 

Gavin
ij

Krogan
ij

Combined
ij PEPEPE +!= 5.0  

This weighted sum was used instead of a straight sum because empirically it was a more 

effective predictor of PPIs, and in practice this may be due to redundancy of the Krogan 

LCMS-MS and MALDI-TOF data. 

 

Clustering of PPI data 

First, scaled PE scores were computed for use in hierarchical clustering to minimize 

variation in scores which does not correspond to variation in the reliability of the 

represented interactions. For example, PE scores of 10 and 20 may both correspond to 

extremely reliable interactions, but a score of zero likely indicates a non-interaction. The 

scaled scores range from zero to one and were intended to approximate confidence values 

(i.e., a scaled score of 0.8 would correspond to 80% likelihood of a true interaction). 

However, these values were not carefully trained and should not be taken as reliable 

confidence values. Equations used for calculating these values are detailed below. A 
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vector of scaled PE scores was then created for each protein which had at least one scaled 

score of 0.2 or higher (corresponding to a PE score threshold of 1.85). A value of 1 was 

assigned for the diagonal elements (representing self-interaction) so that interacting 

proteins would tend to cluster together. This data was then hierarchically clustered using 

the uncentered correlation metric and the average linkage method with the Cluster 3.0 

program (10). Results were visualized and figure images were created using the 

JavaTreeview program (http://jtreeview.sourceforge.net/). 

Scaled scores represent a monotonic mapping of PE scores onto the interval zero to one. 

They would represent confidence values given the approximations that: 1) binary 

interactions in MIPS complexes represent an unbiased subset of the set of all true binary 

protein-protein interactions, 2) MIPS small-scale experiments are approximately 95% 

accurate, and 3) the set of MIPS complexes is independent of the results contained in 

MIPS small-scale experiments. They were computed using the slope of a “coverage 

curve” of the cumulative number of interactions detected which were annotated in MIPS 

complexes versus the total number of interactions identified (see Suppplemental Fig. 3). 

For each PE score, a corresponding slope in the coverage curve was computed by local 

linear regression. The resulting slopes were made monotonic (as a function of PE score) 

and smoothed using the Pool Adjacent Violators Algorithm (11) and Loess regression 

(12). To convert these slopes to scaled scores, they were divided by the fraction of 

interactions included in the MIPS small-scale experiments (excluding two-hybrid studies) 

which were also contained in the MIPS complexes (461/1081). The resulting values were 

multiplied by 0.95, and an upper bound of 0.99 was applied. Scaled scores below 0.05 

were set zero for computational expediency. 
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GO & GOslim Annotations 

GeneOntology (GO) (13) and GOslim annotations were obtained from SGD (14) on 

March 7, 2006. Any feature annotated as ORF, pseudo_gene or 

transposable_element_gene in SGD was used to calculate the total number of proteins in 

each GOslim category. 

   

MIPS & SGD Complexes 

MIPS complexes were obtained from the MIPS database on March 7, 2006 using the 

funcat scheme version 2.0 (15). SGD complexes were extracted from the SGD database 

using the GO cellular component annotations. GO annotations containing the words 

“complex”, “subunit”, “ribosome”, “proteasome”, “nucleosome”, “repairosome”, 

“degradosome”, “apoptosome”, “replisome”, “holoenzyme” or “snRNP” were used to 

assign proteins with the same GO annotation to a complex. 

 

MIPS small-scale experiments 

A collection of 1081 putative protein-protein interactions identified in small-scale 

experiments was obtained from the MIPS database on March 7, 2006 (15). Two-hybrid 

experiments were excluded from this set because they appeared to be of lower accuracy. 

The collection from MIPS was used rather than the larger collection contained in the 

BioGRID database (16), because the collection in MIPS appeared to be of greater 

accuracy by each of the metrics we considered. 
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True Positive & True Negative Calculation 

True positives (TP) were calculated for PPIs within complexes (for MIPS and SGD). 

True negatives (TN) were taken to be connections between proteins in different 

complexes if the proteins have a different subcellular localization according to Huh et al. 

(17) and Kumar et al. (18) or show significant mRNA expression anti-correlation 

(calculated using a standard correlation coefficient, distance > 1.108328 (corresponds to 

R < -0.108328 or a P < 0.001) over a set of 1000 microarray experiments (19)). 

 

ROC Curve Calculations 

ROC curves were calculated using PE (and in some cases socio-affinity) scores 

calculated for all pairs of proteins in the full reference set. Thus a sensitivity value of 1 

indicates detection of all true positive examples in the reference set, and a 1-specificity 

value of 1 indicates detection of all true negative examples in the reference set. For all 

ROC curves plotted on the same graph, an identical reference set was used to calculate 

the curves. 

 

Supporting Website and Database 

A searchable website, which contains all the PE scores and PPI clustering, has been 

created at http://interactome-cmp.ucsf.edu using perl, php and a PostgreSQL relational 

database.  

 
Diploid Bimater Assay 
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To compare yol054w$/yol054w$ cells to wild-type, 1cm2 patches of each were made 

from independent single colonies, replica plated to a lawn of tester cells, cultured for 6 

hours at 30°C, and again replicated to medium selective for rare matings (20). The 

number of colonies on each patch was counted manually with the median number of 

colonies on each patch being used to calculate fold-change (mutant/wild-type ratio). 

Selection was based on histidine prototrophy since experimental genotypes were: 

MATa/MAT%, his3$/his3$ (control) or MATa/MAT%, his3$/his3$, 

yol054w$/yol054w$ (experiment) and the mating testers were: MATa his1 or MAT% 

his1.  

 
a-Like Faker Assay 

To compare MAT% yol054w$ his3 to MAT% his3,1cm2 patches from independent single 

colonies were replica plated to medium selective for rare matings, based on histidine 

prototrophy as above (21). 
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Results 

A Metric for Defining Protein-Protein Interactions 

The recently completed high-throughput affinity purification experiments provided 

hundreds of thousands of putative PPIs. The challenge is then to convert this array of 

affinity purification data into a set of high confidence PPIs. Due to the high-density 

nature of these studies, there are often many separate observations that provide evidence 

supporting or disaffirming a potential interaction, as well as a significant amount of 

experimental noise intrinsic to high-throughput affinity purification approaches. Clearly, 

and as appreciated in the original studies (6, 7), a simple cataloguing of observed 

associations does not adequately exploit these data. Instead, one would like to integrate 

all of the data in a uniform manner to fully exploit direct evidence for interactions where 

one protein was used as a bait and another was identified as a prey, indirect evidence due 

to the co-occurrence of a pair of preys in identical purifications, as well as evidence 

against the validity of an interaction when one protein was used as bait and the other was 

not identified as a prey. This problem can naturally be cast in terms of Bayesian statistics 

where one can quantify the evidence that each relevant observation provides for or 

against the validity of an interaction in terms of the probabilities of making such an 

observation if the interaction is true and the probability if the interaction is not true:  

 

)_|(
)_|(log10 PPIfalsenobservatioP

PPItruenobservatioPEvidence nobservatio =  

 
 
Motivated by this framework, we have created a novel metric, which we term the 

Purification Enrichment (PE) score. For each putative interaction, this score is a sum of 
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the evidence calculated for each relevant observation in a dataset (detailed equations are 

provided in Experimental Procedures). 

By several independent metrics including the ability to predict membership in 

previously annotated complexes, the PE scores appear to identify interactions of higher 

confidence than the socio-affinity scores of Gavin et al. (6) (Supplemental Fig. 1). PE 

scores also performed better than scores that only took advantage of the direct bait-prey 

data from purification experiments (Fig. 1A “Krogan PPI” point and data not shown). 

The use of indirect prey-prey information was also a component of the socio-affinity 

score, and it is conceptually related to a computational approach taken to predict PPIs 

based on shared interaction partners (22). While it is clear from those studies (and our 

own) that there is a wealth of information contained in inferences from indirect prey-prey 

associations, some care should be taken with interactions inferred solely in this way, as it 

appears that incorrect linkages may occasionally be inferred between proteins sharing a 

large number of common interaction partners. For this reason, we have preserved 

annotations indicating which interactions were and were not observed directly (see 

below). We also note that, given a set of purification results, a PE score can be computed 

for any pair of proteins including, but not limited to, pairs of proteins for which direct or 

indirect evidence for an interaction was observed. Pairs that never co-purified will either 

be assigned scores of zero (if neither protein was used as a bait), or negative scores, 

indicating that evidence against the potential interactions was collected. Finally, it is 

important to be aware that the negative interaction data may exhibit some bias with 

respect to tagging artifacts, protein abundance, and mass spectrometry issues, however 
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we have found that including this information in the analysis increases the quality of the 

final dataset. 

 

Assessing Confidence of Binary Interactions 

A standard method to evaluate the accuracy of a scored interaction dataset is to 

measure it against a high-confidence reference set which is taken to be correct (22). For 

the calculated PE scores as well as previous mass spectrometry-based datasets, we 

evaluated accuracy and coverage using a reference set of true positive and true negative 

interactions generated from manually curated complexes obtained from either MIPS (15) 

or SGD (14) (Supplemental Fig. 2, and see Experimental Procedures for a more detailed 

description). True positive interactions were taken to be connections between proteins 

that were annotated as belonging to the same complex in the database (MIPS or SGD). 

While such a reference set will contain some false positives, this contamination is 

unlikely to be biased in favor of a particular dataset. Generating an unbiased set of non-

interacting pairs of proteins, or true negative interactions, is challenging. Nevertheless, 

our results did not seem to be particularly sensitive to the method used to define this set. 

We defined our set of true negative interactions to be connections between pairs of 

proteins which were annotated only to distinct complexes, and which either had non-

overlapping cellular localizations as determined by GFP-fusion studies (17, 18) or had 

significantly anti-correlated mRNA expression patterns. While the localization and co-

expression criteria we applied probably each have their own biases, they both largely 

deplete known interactions from the true negative set (17, 23). With reference sets 

constructed, we could measure the relative accuracy and coverage of different datasets by 
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creating Receiver Operating Characteristic (ROC) curves which measure the tradeoff 

between accuracy and completeness as a function of a score threshold (12). We find that 

when the PE metric is applied to either the new Gavin or the Krogan primary 

coprecipitation results it is possible to identify a substantial (although non-identical) 

fraction of known protein complexes while excluding the vast majority of the true 

negative set (Fig. 1A and Supplemental Fig. 2). Application of the PE score to the co-

precipitation data in Ho et al. (4) was significantly less successful at identifying known 

PPIs (Supplemental Fig. 2), although the difference may be largely due to this dataset’s 

smaller quantity of raw data. In each of the ROC curves, there is a significant portion of 

the curve that is linear and has a slope similar to that of the random background. This 

trend is due to interactions in the reference set which were neither supported nor 

disaffirmed by the dataset and received scores of zero.  

 

A High Confidence Consolidated Dataset 

Subjecting the Gavin et al. and Krogan et al. datasets to the same log-likelihood 

scoring function allowed us to directly combine them into a single comprehensive set that 

encompasses all of the high-throughput TAP purification experiments completed to date. 

We computed combined scores from both the Krogan et al. and Gavin et al. datasets (see 

Experimental Procedures for detailed equations) and, not surprisingly, this consolidated 

dataset provided greater coverage and accuracy than either of the individual datasets (Fig. 

1A and Supplemental Fig. 3). In particular, it is possible to capture approximately 50% of 

the previously reported interactions within protein complexes, although the true coverage 

may be substantially higher since this reference set likely still contains false positives. 
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We chose not to include the Ho et al. data in our consolidated dataset because it was 

created using a different experimental method and its inclusion resulted in negligible 

changes to the resulting ROC curves (data not shown). 

Using the true positive and true negative sets of protein pairs described above not 

only allowed us to compare the processed results of this consolidated dataset to previous 

high-throughput datasets, but it also provided an opportunity to compare our new results 

to those obtained in small-scale experiments which are often taken as a standard for high 

accuracy (24, 25). Consistent with earlier analyses, we find that previous high-throughput 

efforts do not reach the level of accuracy obtained in small-scale studies (25). However, 

using the consolidated dataset, it is possible to define a large set of PPIs with the same 

calculated true positive to true negative rate as the collection of 1081 pairwise 

interactions obtained from small-scale experiments (excluding two-hybrid studies) in the 

MIPS database (Fig. 1A and Supplemental Fig. 4). This true positive to true negative rate 

suggests a score threshold (of 3.19) that defines a set of 9074 high confidence 

interactions among 1622 distinct proteins. Consistent with an earlier analysis based on 

smaller protein-protein interaction networks (26), we find that this network, which is 

probably enriched for stable interactions relative to more transient ones, is not scale-free 

(i.e. although the network contains a substantial number of nodes with high degree, the 

node degree distribution is not described by a power law) (Supplemental Fig. 5).  

The suggestion that this subset of 9074 interactions from the consolidated dataset 

is of comparable confidence to that of a manually curated set of interactions identified in 

small-scale experiments was tested by three additional independent measures: subcellular 

co-localization, GO annotation and mRNA co-expression. First, since proteins that 
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interact physically tend to have the same subcellular localizations (17, 18, 25), we 

compared the published experimentally determined localizations of the putatively 

interacting protein pairs. Unlike pairs identified in previous high-throughput studies, we 

found that pairs in this high confidence set were more likely to have matching 

localizations than pairs identified in small-scale experiments (Fig. 1B). Next, we found 

that three different classes of GO annotations (cellular component, biological process, 

and molecular function) were either equally or more likely to match for pairs of 

interacting proteins in our new set compared to pairs derived from small-scale 

experiments (Fig. 1B). Finally, it is known that genes encoding physically interacting 

proteins are more likely to have similar expression profiles (10, 23, 27, 28), and so we 

examined the distribution of Pearson correlation coefficients between expression patterns 

of interacting pairs over a set of 1000 previously published microarray experiments (19). 

Relative to the pairs identified in small-scale experiments, our new high confidence set is 

significantly enriched for gene pairs with highly similar expression patterns (Fig. 1C and 

Supplemental Fig. 4). While this enrichment may reflect better coverage of the ribosome 

and proteins involved in ribosome biogenesis, the new high confidence set also shows an 

almost identical lack of anti-correlated gene pairs when compared to the small-scale set 

(Fig. 1C and Supplemental Fig. 4), providing further evidence that the consolidated set of 

PPIs has a very low false positive rate which compares favorably to that of the MIPS 

small-scale dataset. 

Comparison of the PPIs generated in this study to ones deposited into BioGRID 

(16) (which is a primary source for SGD (14)) from the original studies clearly 

demonstrates that we have defined a more reliable dataset (Fig. 1A). In particular, the 
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4456 PPIs unique to our set appear to be of confidence comparable to that of the small-

scale experiments, whereas those unique to either the Gavin (2963) or Krogan (4512) sets 

deposited in the databases appear to be of markedly lower confidence as judged by 

cellular localization and GO annotation (Fig. 2). It should be noted that using the socio-

affinity scoring system described by Gavin et al. (6) provides a dataset that, although of 

lower coverage and accuracy than the new datasets we define here, is of higher 

confidence than the set deposited in the major databases (Supplemental Fig. 1). We also 

note that although in general they should be considered of lower confidence, the 

interactions unique to the Gavin or Krogan sets are still likely to contain a number of 

physiologically relevant associations. The high confidence set of interactions defined 

here, similar to other PPI datasets derived from high-throughput studies (5-7), shows 

some apparent bias towards high-abundance proteins and against proteins from certain 

cellular compartments (such as the cell wall and the plasma membrane) (Supplemental 

Fig. 6). These biases probably reflect experimental limitations, but may also to some 

extent reflect real features of the distribution of protein complexes in yeast. 

 

A Portrait of the Physical Interactome Map 

Several methods to accurately define protein complexes were explored using the 

high confidence consolidated PPI dataset. Using such analyses as a final representation, 

however, often results in unwanted consequences such as the merging of several clearly 

distinct complexes that share one or more subunits. Also, information regarding weak 

associations between protein complexes can be lost. To overcome these difficulties and in 

an attempt to visualize the physical interactome as it exists in vivo, we subjected the 
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patterns of PPIs for all proteins having at least one interaction with a scaled PE score (see 

Experimental Procedures) above 0.20, a criterion encompassing almost 2400 proteins, to 

hierarchical clustering (Fig. 3A) (see Experimental Procedures for a more detailed 

description). The threshold used here, which is lower than the one used above to define 

9074 high confidence interactions, was used to allow a more complete interaction map. 

Stable, stoichiometric protein complexes are, for the most part, accurately recapitulated 

as distinct blocks along the diagonal while PPIs that reside off the diagonal either 

represent shared subunits of complexes or weak associations between complexes (Fig. 3B 

and C). A clear example of the former emerges from four complexes that are involved in 

chromatin function: NuA4 (29-31), SWR-C (31-33), INO80C (34) and the helicase 

chaperone complex, Tah1/Pih1 (35) (Fig. 3D). Visual inspection of the off-diagonal 

connections demonstrates that the DNA helicases, Rvb1 and Rvb2, are components of the 

INO80C, SWR-C and Tah1/Pih1, but not NuA4, protein complexes (Fig. 3D). Similarly, 

Swc4 and Yaf9 are shared components of SWR-C and NuA4, while the actin-related 

proteins, Act1 and Arp4, are part of SWR-C, NuA4 and INO80, but not the Tah1/Pih1, 

complexes. Further inspection of the off-diagonal connections (Fig. 3B) reveals that Tra1 

is a shared subunit of SAGA (36) and NuA4 (29), Taf14 resides both in TFIIF and 

INO80C (37) and actin (Act1) physically associates with several factors involved in 

cytoskeleton formation in addition to being a subunit of multiple chromatin remodeling 

complexes (38). A different region of the clustergram nicely demonstrates that Sec13 is 

part of both the Nup84 nucleoporin (39) and the coatomer COPII complexes (40) (Fig. 

3E). Further inspection reveals that Sec23, a component of the COPII complex, seems to 

be independently associated with the three members of the Sec24 family, Sec24, Sfb2 
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and Sfb3, a phenomenon that has been previously characterized (41) (see 

http://interactome-cmp.ucsf.edu for more comprehensive views of the clustergrams). 

Using a two-color scheme overlaid on the clustering analysis (Fig. 3A), we 

highlighted interactions that were observed directly as bait-prey pairs (yellow) from those 

that were solely inferred on the basis of co-purification as preys in the same experiments 

(blue). Strikingly, the physical composition of the ribosome is primarily inferred from 

indirect (prey-prey) interactions. Mainly due to the purification protocols used, neither 

the Krogan et al. nor Gavin et al. studies successfully purified tagged subunits of the 

ribosome, although both works often obtained ribosomal proteins as preys. Krogan et al. 

filtered these promiscuous proteins from their dataset, and although Gavin et al. retained 

the ribosomal protein data, it resulted in the inference of many complexes containing 

various subsets of the ribosome. Instead, in this unbiased representation, the ribosome 

remarkably appears as a single complex along the diagonal, largely free of non-specific 

off-diagonal connections.  

As a further demonstration that hierarchical clustering of the consolidated data is 

potentially more informative than the lists of complexes presented in the original studies, 

we used a different two-color scheme (yellow and red) to highlight interactions that were 

not present in either the inferred protein complexes from Gavin et al. or Krogan et al. 

(Fig. 4A-D). These new interactions may have been identified due to the improved 

scoring system, the simultaneous consideration of both raw datasets, or a combination of 

these factors. Consistent with the trends observed in the ROC curves (Fig. 1A), a number 

of previously characterized PPIs were only seen with the new analyses. For example, six 

subunits of the transcriptional elongation complex Elongator have been previously 
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characterized (42-44), but only in this new representation is the smallest subunit, Elp6, 

actually confirmed (Fig. 4A). Similarly, in our new merged PPI dataset is it clear that 

Sec20 is a component of the Dsl1 complex, required for stability of the Q/t-SNARE 

complex at the endoplasmic reticulum (45) (Fig. 4B), and that Dad2 and Dad3 are 

components of the DASH microtubule ring complex (46) (Fig. 4C).  

An example of a weak association between two distinct sets of proteins revealed 

by the hierarchical clustering is represented in Fig. 4D. The MIND (Mtw1 Including 

Nnf1-Nsl1-Dsn1) complex (47) is seemingly associated with the kinetochore complex 

through one of it subunits, Ame1. A relatively weak association also exists between 

several subunits of the inner and outer kinetochore (Ame1, Mcm22, Okp1, Chl4, Nkp2) 

(48) and an uncharacterized protein, Yol054w, a connection not present in the complexes 

derived in the Krogan et al. and Gavin et al. studies (Fig. 4D). Consistent with this 

hypothesis, deletion of YOL054w results in genomic instability as measured by bimater 

(20, 49), and “a-like faker” (21) assays (Fig. 4E,F). 
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Discussion 

With the two largest high-throughput studies of protein-protein interactions in 

yeast (or any other organism) recently completed, two questions arise: how completely 

have interactions been identified, and how accurately have they been determined? With 

respect to coverage, a rough calculation based on the degree of overlap between the two 

recent studies suggests that they cover approximately 80% of interactions accessible to 

the TAP approach under the conditions used.  

In terms of accuracy, we demonstrate here that high-throughput identification of 

protein-protein interactions has reached a new landmark. For the first time, this 

consolidated dataset can match the reliability of small-scale experiments. By 

simultaneously analyzing the two recent studies with one scoring system and creating a 

single merged dataset, we were able to generate a large set of PPIs ordered according to a 

score that indicates the strength of experimental evidence supporting their validity. In 

particular, we are able to identify a large subset of approximately 9000 of these 

interactions, which by several independent metrics appear to be of equal or greater 

accuracy than that attained in a collection of small-scale experiments. More valuable than 

these high accuracy binary interactions, however, may be the portrait of the yeast 

physical interactome that emerges from them through hierarchical clustering. The weak, 

but reproducible interactions that appear between well-defined complexes or between the 

individual components within these complexes and other proteins can be used to generate 

a number of hypotheses for future research.  

 Even though identification of stable protein complexes that survive TAP 

purification may be nearing saturation for Saccharomyces cerveisiae, much work remains 
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in characterizing PPIs. For example, since a precise estimate of the false positive rates for 

the PPI datasets presented here remains elusive, a systematic re-analysis of a subset of 

these putative interactions using small-scale methods may be very valuable. Also, further 

identification of transient associations between well-defined complexes, perhaps by 

further exploiting the yeast two-hybrid system, will prove insightful. An understanding of 

the dynamics of protein-protein interactions in response to changes in the environment 

has yet to be systematically explored. Obtaining low-resolution structural analyses of the 

defined complexes using electron microscopy and determining which protein post-

transcriptional modifications are involved in mediating PPIs are also of immediate 

interest. Furthermore, efforts should be made to more quantitatively characterize protein-

protein interactions perhaps by using technologies amenable to detecting PPIs in vivo. 

Finally, considering that such significant biological information was extracted from yeast 

using this approach, a similar comprehensive strategy for defining the physical 

interactome in more complex organisms must be endeavored. 
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Figure Legends 

Figure 1 

Generation of a High Confidence PPI Dataset 

(A) ROC curve comparing PE analysis based on the primary data from Gavin et al. (6) 

(green), Krogan et al. (7) (red) and the consolidated (blue) dataset. MIPS complexes were 

used to generate true positive and true negative reference sets (see Experimental 

Procedures). The black diamond represents MIPS small-scale experiments (excluding 

two-hybrid experiments), and the dotted line indicates the set of points with the same true 

positive to true negative rate as MIPS small-scale experiments. The gold square 

represents earlier results from Gavin et al. (3). The binary interactions deposited in the 

SGD and BioGRID databases from the original Krogan et al. (7) and Gavin et al. (6) 

studies are represented by red and green circles, respectively. Inset, the same ROC curves 

are shown with expanded axis limits. (B) A subset of 9074 interactions from the 

consolidated dataset was obtained by applying a score threshold based on the true 

positive to true negative rate of the MIPS small-scale experiments (see Experimental 

Procedures). Shown is the fraction of interacting protein pairs with identical annotations 

from a random background set (gray), the initial Gavin et al. data (3) (gold), the MIPS 

small-scale experiments (black), and the above described subset of the consolidated data 

(blue) for the indicated categories. (C) The Pearson’s correlation between the expression 

patterns (over a collection of approximately 1000 microarray experiments (19)) of pairs 

of genes encoding putatively interacting proteins were computed for the same sets as in 

B. The same color scheme is used. The curves have been normalized according to the 
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frequency at a correlation of 0.16, which corresponds to the maximum of the distribution 

for the small-scale experiments. 

 

Figure 2 

The High Confidence PPI subset of the Consolidated Dataset is of Higher 

Confidence than the original Deposited Datasets. 

(A) Venn diagram showing the overlap between the high confidence PPI subset of the 

consolidated dataset, PPIs from Gavin et al. as deposited in BioGRID and PPIs from 

Krogan et al. as deposited in BioGRID. The number of PPIs defined in each dataset is 

indicated. (B) Shown is the fraction of interacting protein pairs with identical annotations 

for the indicated categories. The bars in the different categories represent a random 

background set (grey), PPIs found within the deposited Gavin et al. dataset only (green), 

the deposited Krogan et al. dataset only (red), the consolidated subset only (blue), in all 

three datasets (brown) and from the MIPS small-scale experiments (black). 

 

 

Figure 3 

The Unified, Physical Interactome Map. 

(A) Hierarchical clustering of PPIs with a scaled PE score above 0.20. Directly observed 

interactions are labeled black (0) to yellow (1) and interactions purely inferred from 

indirect observations are labeled black (0) to blue (1). (B) and (C) Details from A 

showing an enlarged view of some of the complexes defined around the diagonal. The 

white rectangles in (B) indicate off-diagonal interactions between different complexes 
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and/or shared subunits. (D) Hierarchical clustering and corresponding venn-diagram of 

the NuA4 (blue), SWR-C (red), INO80C (green) and Tah1/Pih1 complexes. (E) 

Representation of the Nup84 nucleoporin and the coatomer COPII complexes.  

 

Figure 4  

PPIs and Protein Complexes Evident from the Consolidated Dataset 

Hierarchical clustering of the PPI dataset accurately reveals the Elongator (A), Dsl1 and 

Q/t-SNARE (B), DASH microtubule ring (C), the inner and outer kinetochore and MIND 

(D) complexes. Interactions reported in either of the original datasets and the 

consolidated dataset are labeled black (0) to yellow (0.5) and interactions only identified 

by the consolidated dataset with our new analysis are labeled black (0) to red (0.5). 

Homozygous diploid yol054w$ cells were tested for elevated ‘bimater’ (E) and ‘a-like 

faker’ phenotypes (F). Representative patches of homozygous wild-type and yol054w$ 

strains after mating with MATa and MATa testers are shown. Histograms show the 

median number of colonies (n>5, error bar = 1 s.d.). 
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Figure 3 Collins et al.
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