
Systems biology1 aims to move beyond the study of  
single biomolecules and the interaction between 
specific pairs of molecules; its goal is to describe, in 
quantitative terms, the dynamic systems behaviour of 
complex biological systems that involve the interaction 
of many components. Traditional reductionist genetic 
and molecular biology approaches have yielded huge 
amounts of data, but understanding how low-level bio-
logical data translates into functioning cells, tissues and 
organisms remains largely elusive. Now that life scien-
tists possess an extensive ‘parts list’ for biology, we can 
begin to think about how the function of a biological 
system arises from dynamic interactions between its 
parts. As even simple dynamic systems can exhibit a 
range of complex behaviour, such an approach requires 
quantitative mathematical and statistical modelling 
of biological system dynamics. At the level of cellular 
modelling, this ideally requires time course data on the 
abundance of many different biomolecules at single-cell 
resolution.

Traditionally, systems dynamics have been described 
by using continuous deterministic mathematical models. 
However, it has recently been acknowledged that bio-
chemical kinetics at the single-cell level are intrinsically 
stochastic2. It is now generally accepted that stochastic 
models are necessary to properly capture the multiple 
sources of heterogeneity needed for modelling biosys-
tems in a realistic way. However, such models come at 
a price; they are computationally more demanding than 
deterministic models, and considerably more difficult to 
fit to experimental data.

Statistics is the science concerned with linking models  
to data, and as such it is absolutely pivotal to the success 
of the systems biology vision. Statistical approaches to 
inferring the parameters of deterministic and stochas-
tic biosystems models provide the best way to extract 
maximal information from biological data. Effective 
methods for statistically estimating stochastic models 
by using time course data have only recently appeared 
in the systems biology literature; these techniques are the 
final piece of the puzzle needed to describe biological 
dynamics in a quantitative framework.

This article reviews the key issues that need to be 
understood to describe biological heterogeneity prop-
erly, the approaches that have been used and the range of 
problems that they solve, together with the most promis-
ing avenues for further development. Many of the exam-
ples in the literature concern single-celled organisms such 
as bacteria and yeast; however, heterogeneity is present in 
all biological systems, and separating intrinsic stochast-
icity from genetic and environmental sources3 is likely to 
become increasingly important in the context of human 
genetics and complex diseases in the near future.

Basic modelling concepts: a working example
One of the principal aims of systems biology is to test 
whether our understanding of a complex biological 
process is consistent with observed experimental data. 
As dynamic systems exhibit complex behaviour, our 
understanding must be encoded in quantitative mathe-
matical models. A lack of consistency between the model 
and the data indicates that further research is required to 
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Continuous deterministic 
mathematical model
A model that does not  
contain any element of 
unpredictability, and that 
describes the smooth and 
gradual change of model 
elements (such as biochemical 
substances) according to 
pre-determined mathematical 
rules. The precise behaviour of 
the model is entirely 
pre-determined (and hence, in 
principle, predictable) from the 
form of the equations and  
the starting conditions.
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Abstract | Two related developments are currently changing traditional approaches to 
computational systems biology modelling. First, stochastic models are being used 
increasingly in preference to deterministic models to describe biochemical network 
dynamics at the single-cell level. Second, sophisticated statistical methods and 
algorithms are being used to fit both deterministic and stochastic models to time 
course and other experimental data. Both frameworks are needed to adequately 
describe observed noise, variability and heterogeneity of biological systems over a 
range of scales of biological organization.
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Stochastic model
A model that contains an 
element of unpredictability or 
randomness specified in a 
precise mathematical way. 
Each run of a given model will 
produce different results, but 
the statistical properties of the 
results of many such runs are 
pre-determined by the 
mathematical formulation of 
the model.

complete our understanding of the system under study. 
Consistent models can be used to make further testable 
predictions for more independent validation, and also to 
carry out in silico investigation of the system behaviour 
that would be difficult or time consuming to do entirely 
in the laboratory. These concepts can be illustrated 
using the example of oscillations and variability in the  
well-characterized p53–MDM2 system.

The human tumour suppressor protein p53 (encoded 
by the TP53 gene) is a transcription factor that has an 
important role in regulating the cell cycle, tumour sup-
pression and DNA damage response4. Population level 
data showed only a single peak in p53 expression, fol-
lowed by decay back to basal levels. More recently, how-
ever, single cell assays in MCf7 breast cancer cell lines 
have revealed that levels of p53 sometimes seem to oscil-
late in response to radiation-induced DNA damage5–7.  
for example, the Alon laboratory measured p53 and 
MDM2 levels in single cells over time using two fluo-
rescent reporters7. FIGURE 1a shows clearly a highly het-
erogeneous cellular response despite some evidence of 
p53 and MDM2 oscillations.

Oscillations are indicative of negative feedback in the 
system dynamics. We would therefore like to understand 
the underlying mechanisms, and to test that understand-
ing by developing quantitative and predictive models  
of the system behaviour. The essential feedback feature of  
this system is well known: p53 activates transcription 
of MDM2, a ubiquitin E3 ligase, which in turn binds 
to p53 and thereby enhances its degradation8,9. The sig-
nal for p53 activation can come from more than one 
source. In MCf7 cell lines, which do not express the 
cyclin-dependent kinase inhibitor p14Arf (also known 
as CDKN2A), the strongest signal probably comes from 
the kinase ATM (ataxia telangiectasia mutated), which 
is activated by DNA damage; ATM phosphorylates both 
p53 and MDM2, blocking their binding to each other 
and enhancing MDM2 degradation, thereby allowing 
accumulation of active p53 (FIG. 1b).

Many systems biology models are concerned with 
intracellular processes, and therefore operate (concep-
tually, at least) at the level of a single cell. Most stochastic 
and deterministic models for chemical reaction network 
kinetics make the assumption that cellular compartments 
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Figure 1 | Fluctuations in p53 and MDM2 levels in single cells. a | Image analysis can be used to extract time courses 
of expression levels from time-lapse microscope movies. The plots show the measured fluorescence levels for seven 
individual cells from one particular movie (movie 2 in data from REF. 7, provided by the authors); the tumour suppressor 
protein p53 is represented by blue circles, and the ubiquitin E3 ligase MdM2 is represented by yellow circles. Although 
there is some evidence of p53 and MdM2 oscillations, there is clearly a highly heterogeneous cellular response. b | The 
essential interactions between p53, MdM2, and key signalling molecules ataxia telangiectasia mutated (ATM) and  
the cyclin-dependent kinase inhibitor p14ARF (also known as CdKN2A). p53 activates transcription of MdM2. MdM2 
then binds to p53, thereby enhancing its degradation8,9. p53 can be activated by the kinase ATM, which is activated by 
dNA damage; ATM phosphorylates p53 and MdM2, this prevents the binding of p53 to MdM2 and enhances MdM2 
degradation, thereby allowing accumulation of active p53. MdM2 can also be inactivated by p14ARF.
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Michaelis–Menten
A simple kinetic law that 
modifies the rate of conversion 
from substrate to product 
based on enzyme 
concentration.

Hill kinetics
A more complex enzyme 
kinetic law than simple 
Michaelis–Menten kinetics.

Ordinary differential 
equation
A mathematical equation 
involving differential calculus. 
In simple cases, explicit 
formulas can be derived for 
their solution, but typically 
they must be numerically 
integrated on a computer.

Probability theory
The mathematical theory of 
chance, randomness, 
uncertainty and stochasticity.

Markov jump process
A class of stochastic processes 
that is well studied in 
probability theory and that 
includes the class of processes 
described by stochastic 
chemical kinetics.

Stochastic chemical kinetics
A chemical kinetic theory 
which recognizes that 
molecules are discrete entities, 
and that reaction events occur 
at random when particular 
combinations of molecules 
interact.

can be regarded as small well-stirred containers, thus 
ignoring spatial effects, and describe the dynamics of the 
process of interest using a set of biochemical reactions10. 
The differences between stochastic and deterministic 
approaches relate to the assumptions made regarding 
the nature of the kinetic processes associated with the 
reaction network.

deterministic models
The classical approach to chemical kinetics is to assume 
that reactants are abundant and have a level measured 
on a continuous scale, traditionally in units of concen-
tration. In the p53 example, reactants will be proteins 
and complexes such as p53, MDM2, p53–MDM2, 
phosphorylated p53, as well as the mrNA molecules 
that encode the different proteins. The state of the 
system at any particular instant is therefore regarded 
as a vector (or list) of amounts or concentrations. 
furthermore, the changes in amount or concentration 
are assumed to occur by a continuous and determin-
istic process. The velocity of each reaction is specified 
using a rate equation that typically assumes mass action 
kinetics or is based on an enzyme kinetic law (such as 
Michaelis–Menten or Hill kinetics)11. The way in which the 
state of the system evolves can be described mathemati-
cally (by using ordinary differential equations (BOX 1)). In 
certain simple but usually not biologically realistic 
cases, these equations can be solved to give an explicit 
formula that describes the time course trajectory. In 
more complicated scenarios, such as the p53 example 
described above, computational methods are used 
that provide only approximate (but typically accurate)  
solutions.

Although some deterministic models of the p53–
MDM2 system have been proposed in the litera-
ture6,7,12,13, they are unsatisfactory for several reasons. 
The most fundamental limitation of deterministic 
models is that they inevitably fail to explain the highly 
noisy and heterogeneous observed cellular response to 
DNA damage. The obvious lack of agreement between 
the model and the data cannot be attributed to genetic 
or environmental effects, as these have been largely 
eliminated by the experimental design. It is therefore 
difficult to make any sensible assessment of the extent 
to which such models explain the observed data. 
Another limitation of deterministic models is that they 
do not span multiple scales. Either the model oscillates 
(as suggested by the single-cell assays), or it has a sin-
gle peak in p53 expression (as observed in population 
level data). It is difficult to reconcile these two obser-
vations without accepting a heterogeneous cellular 
response, and in practice this involves introducing sto-
chasticity into the models. by contrast, an essentially 
stochastic model based on the known biochemical 
mechanisms has recently been described14. This sim-
ple model shows that the heterogeneity observed in the 
experimental data is entirely consistent with intrinsic 
stochasticity in the system; it also has the property that 
the population average of the p53 levels of many single 
cells over time has the observed single peak in p53  
expression.

Modellers aim to find simple explanations for a 
range of complex and sometimes apparently contradic-
tory experimental observations. Here, a single simple 
mechanistic model simultaneously explains how p53 
levels can oscillate and why they do not oscillate in 
some cells, the origins of stochasticity and heterogene-
ity in the cellular response, and the apparent conflict 
between the single-cell data and population level data. 
No comparatively simple deterministic model can do 
this. furthermore, because the stochastic model exhib-
its a similar range of behaviour to the experimental 
data, it becomes meaningful to try and make a seri-
ous assessment of how well such a model matches the 
experimental data, and to try and use the experimental 
observations to improve our knowledge about the model  
parameters15.

Stochastic models
The continuous deterministic approach to modelling 
biochemical reaction networks fails to capture many 
important details of a biological process and the experi-
mental data that relates to this process. The ‘missing 
detail’ manifests itself as a degree of apparent unpredict-
ability of the system. As a result, the single-cell dynam-
ics of biological systems seem noisy, or stochastic, with 
these terms being used more or less interchangeably. 
Heterogeneity is then a phenotypic consequence for a 
cell population given stochastic single-cell dynamics. 
Stochasticity and heterogeneity are aspects of model 
biological system behaviour that cannot be ignored, and 
attempts to refine experimental techniques to eliminate 
them are both hopeless and misguided2,16,17.

There are multiple sources of stochasticity and het-
erogeneity in biological systems, and these can, and 
often do, have important consequences for understand-
ing overall system behaviour. Stochasticity influences 
genetic selection and evolution18,19; biological systems 
have also developed strategies for both exploiting20 and 
suppressing18 biological noise and heterogeneity21. Any 
useful predictive model of the system must therefore 
account for a degree of intrinsic unpredictability.

The only satisfactory quantitative modelling frame-
work that takes into account the inherent unpredictabil-
ity of a system is based on probability theory. Statistical 
mechanical arguments are used to understand the proba-
bilistic behaviour of the dynamic stochastic process asso-
ciated with the biochemical network. The dynamics of a 
biological system can be modelled using a Markov jump 
process, whereby any change in the system occurs dis-
cretely after a random time period, with the change and 
the time both depending only on the previous state22–25. 
This is a well-understood model from the theory of sto-
chastic processes. It has been known for decades that 
this framework can be applied to the simulation of sto-
chastic chemical kinetics26, but it did not become a well- 
established approach in biology until the late 1990s27, 
when experimental techniques became precise enough 
to show that experimental findings could be mod-
elled accurately only by incorporating stochasticity28. 
Stochastic modelling has a long tradition in other areas of  
biological modelling, including population dynamics24,29.
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Box 1 | A simple model for protein production and degradation

Consider the following artificial model for production and degradation of a single protein, X: the protein is produced at a 
constant rate α, and each protein molecule is independently degraded at a constant rate µ. This can be written using 
chemical reaction notation as:

→

→µ

α

 
Let the number of molecules at time t be denoted X

t
, and assume that there are initially no protein molecules, so that 

X
0
 = 0. The plots show the case α = 1, μ = 0.1. The parameters are purely illustrative and not intended to model any real 

biological system.
The first plot shows the standard reaction rate equation (RRE) model. Although in this case this model captures the 

essential ‘shape’ of the discrete stochastic (Markov jump process) model, shown in the second plot, it completely ignores 
the substantial variability. The final plot shows the chemical Langevin equation (CLE) model. Although this model 
sacrifices discreteness, it effectively captures both the shape and variability of the discrete stochastic solution, despite the 
low copy numbers involved. Note that although in the case of this simple model, the equilibrium means (and, indeed, 
time-varying means) of the stochastic models match the deterministic model, in general this is not the case. The plots for 
the stochastic models show a single realization of the process, based on independent noise processes.
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Continuous deterministic model (RRE):

Solution:

Equilibrium:

α

µα

µα

µα

Continuous stochastic model (CLE):

Discrete stochastic model:

µ µα α

At equilibrium:

Equilibrium distribution:

Probability distribution
A precise mathematical 
description of a stochastic 
quantity.

As in the deterministic case, some simple network 
models are analytically tractable. In these simple situ-
ations, the full probability distribution for the state of the 
biological system over time can be calculated explic-
itly. However, as for the deterministic case, the class of 

solvable models is small, mainly covering those models 
that contain only single-molecule reactions. As almost 
all interesting systems involve interactions between 
molecules of different types, these simple models do not 
cover systems of genuine practical interest. Here, too, 
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Stochastic simulation 
algorithm
In the context of stochastic 
chemical kinetics, this refers to 
an exact discrete event 
simulation algorithm for 
generating time course 
trajectories of chemical 
reaction network models.

Monte Carlo error
The unavoidable error 
associated with estimating  
a population quantity from a 
finite number of stochastic 
samples from the population.  
It can often be reduced by 
averaging large numbers of 
samples.

Intrinsic noise
A crude categorization of 
stochasticity in biological 
systems that loosely 
corresponds to noise that 
cannot be controlled for.

numerical simulation of the process on a computer is the 
key tool used for understanding the system behaviour. 
for Markov jump process models, an algorithm known 
in this context as the stochastic simulation algorithm (but 
more commonly known as the Gillespie algorithm) 
is used to generate exact realizations (or ‘runs’) of the 
Markov jump process26. The algorithm generates time  
course trajectories of the system state over a given  
time window, starting from a given initial system state 
(BOX 2). Of course, these realizations are stochastic, and are 
therefore different for each run of the simulation model. 
They are ‘exact’ in the sense that each run is an independ-
ent realization from the true underlying process; proper-
ties deduced about the probabilistic nature of the process 
from multiple runs can be made arbitrarily accurate by 
averaging over a sufficient number of runs to reduce the 
Monte Carlo error associated with the estimates. Accessible 
introductions to methods of stochastic simulation  
for reaction networks can be found in REFs 25,30,31.

Modelling intrinsic noise. Once stochastic models are 
created, they allow a range of investigations that are not 
possible using deterministic models. Modelling and 
experimental investigation of noise at the single-cell 
level in isogenic cell populations is currently the subject 
of many active research programmes. Stochastic model-
lers acknowledge the fact that molecules are discrete enti-
ties, and that reactions between molecules are stochastic 
events, which typically occur when molecules collide 
according to random processes. The state of the system 
at a given instant is therefore regarded to be a vector of 
counts of molecules, and remains constant until the next 
reaction event occurs. for the p53 example, this means 
that the state will be the actual number of molecules of 

p53, MDM2 and so on present in the cell; and this number 
will not change continuously, but will remain constant 
until changing abruptly each time a reaction involving 
those molecules occurs. for example, a p53–MDM2 
binding event might occur when a p53 and MDM2 mol-
ecule collide at random in the cellular environment. The 
implications for the system state will be that the number 
of molecules of p53 and MDM2 will decrease by one, 
and the number of p53–MDM2 complexes will increase 
by one. Although it might seem reasonable to view the 
molecular dynamics of cellular processes as essentially 
deterministic, models concerned only with molecu-
lar counts do not explicitly consider the position and 
momentum of every single molecule, and so the timings  
of reaction events are essentially unpredictable.

Intrinsic noise in biochemical reactions has many com-
ponents, including randomness of promoter binding 
and other DNA binding events, stochasticity in mrNA 
transcription and degradation processes, stochasticity of 
translation and protein degradation events, and random-
ness of other protein–protein and protein–metabolite 
interactions. Stochastic models allow investigation of the 
intrinsic variability of the cellular process of interest. for 
example, did the system evolve to suppress noisy gene 
expression? Such suppression could be achieved using a 
variety of techniques, including utilization of a carefully 
tuned signalling cascade32. Alternatively, has the sys-
tem evolved to exploit noise? Several examples of noise 
exploitation are known for the Gram-positive bacterium 
Bacillus subtilis (BOX 3). Stochasticity in gene expression 
has been especially well studied in yeast (BOX 4), but  
it has also been observed and modelled in mammalian 
cells14,33. Experimental technology has developed to 
the extent that, in special cases, one can even observe  
stochasticity at the single-molecule level34.

A common and well-studied example of noise exploi-
tation is provided by bistability in a reaction network in 
conjunction with randomness of expression: this frame-
work allows a single cell to select one of two phenotypic 
traits at random, with a probability that is specific to the 
network and to its associated initial conditions35. This 
allows organisms to express phenotypic heterogene-
ity even in uniform genetic and environmental condi-
tions, and can have selective advantages. It is difficult to  
investigate such issues using deterministic models.

Other sources of heterogeneity. There are, of course, 
sources of variation in cellular systems other than intrin-
sic stochastic kinetic noise in biochemical reactions that 
should be incorporated into the models if they are to 
describe cell population behaviour effectively. One is 
randomness or uncertainty in the initial state of the 
biological system. for example, cells in a particular 
experiment might behave differently because they were 
different at the start of the experiment — perhaps hav-
ing different rNA and protein levels — even if they are 
genetically identical.

One way to incorporate this uncertainty into the  
analysis is to construct simulations by first simulating 
initial conditions from a specified probability distribu-
tion, and then carrying out the stochastic simulation 

 Box 2 | outline of the gillespie algorithm

The Gillespie algorithm is used to simulate stochastic time course trajectories of the 
state of a chemical reaction network. The essential structure of this discrete event 
simulation algorithm is outlined below.
•	Step 1: set the initial number of molecules of each biochemical species in the reaction 

network and set the simulation time to zero.

•	Step 2: on the basis of the current molecular abundances, calculate the propensity for 
each possible reaction event.

•	Step 3: using the current propensities, simulate the time to the next reaction event, 
and update the simulation time accordingly (the larger the reaction propensities, the 
shorter the time to the next event).

•	Step 4: pick a reaction event at random, with probabilities determined by the reaction 
propensities (higher propensities lead to higher probability of selection), and update 
the number of molecules accordingly.

•	Step 5: record the new simulation time and state.

•	Step 6: check the simulation time. If the simulation is not yet finished, return to step 2.

To give an explicit example, consider using the Gillespie algorithm to generate a 
realization from the simple model described in the discrete stochastic model of BOX 1, 
which considers the production and degradation of a molecule. At each point in the 
simulation, the time to the next reaction event is simulated (and the expected time to 
wait will be shorter the more molecules there are), and a decision will need to be made 
as to whether the reaction should be a synthesis or a degradation event, with the 
probability of degradation increasing as the number of molecules in the system 
increases. For an accessible introduction to the Gillespie algorithm, and stochastic 
modelling for systems biology more generally, see REF. 25.
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Diffusion process
A stochastic process 
continuous in both time and 
space and that can be 
described by a stochastic 
differential equation.

Next reaction method
An alternative exact simulation 
algorithm to the stochastic 
simulation algorithm, which in 
certain situations can be faster.

Diffusion approximation
A diffusion process that 
approximates a Markov jump 
process.

Chemical Langevin equation
(CLE). A diffusion 
approximation to a stochastic 
chemical kinetic model.

algorithm to produce a trajectory that is dependent on 
that particular initial condition. Multiple independent 
realizations of the process constructed in this way will 
therefore incorporate both sources of uncertainty. Note 
that random initial conditions can be used in conjunc-
tion with continuous deterministic simulation models. 
That is, one can pick a random starting point, run a 
deterministic algorithm, and repeat the process to obtain 
a random ensemble of trajectories. However, this should 
not be regarded as an alternative to, or substitute for, 
carrying out stochastic simulation of noisy expression 
— the two sources of randomness are different, and can 
lead to qualitatively and quantitatively different behav-
iour. Taking the p53 model as an example, randomizing 
the initial conditions of a deterministic model of the net-
work will clearly introduce some heterogeneity, but it will 
fail to capture the effect of the gradual loss of cell–cell 
synchronization as oscillations gradually and randomly 
drift out of phase. However, this effect is captured by the 
stochastic model even with fixed initial conditions.

Stochastic models are almost always required when 
a system is driven by random events. This is of particu-
lar relevance when modelling intracellular damage and 
repair processes, as damage often results from occasional 

low-frequency events such as ssDNA breaks caused by 
endogenous reactive oxygen species. The DNA repair 
processes are similarly stochastic, working perfectly 
most of the time but occasionally failing (with a particu-
lar probability). Such processes are especially relevant to 
the biochemical mechanisms of ageing (BOX 5).

There can also be uncertainty regarding kinetic rate 
constants, or it might be that the rate parameters of reac-
tions are likely to vary randomly during the course of 
the simulation. The former can be dealt with in a similar 
manner to random initial conditions. The latter can arise 
if a reaction rate is modulated by a variable that is not 
explicitly being modelled; this situation should be handled 
by directly associating a time-varying stochastic process 
with the rate ‘constant’. In practice, an independent noise 
process or a diffusion process is often used for this purpose. 
Either way, careful modification of the basic stochastic 
simulation algorithm is required36. Again, this approach 
can also be used in conjunction with continuous deter-
ministic models for the system dynamics, but here the 
result is a fundamentally stochastic model. Indeed, such 
an approach was used by Geva-Zatorsky et al.7 to capture 
the observed heterogeneity of p53 oscillations.

Fast stochastic models. The basic stochastic simulation 
algorithm becomes computationally infeasible for cer-
tain complex networks of practical interest — those with 
fast reactions or large numbers of certain biomolecules. 
Essentially, problems arise as soon as the model contains 
distinct processes operating on different timescales. for 
example, in the context of the p53 example, there can 
be thousands of p53–MDM2 binding and dissociation 
events for each p53 molecule synthesis event, and the 
stochasticity associated with the binding and disso-
ciation can be small compared with that of synthesis, 
despite the fact that almost all of the computational 
effort is spent on simulating binding and dissociation 
events. Similar issues arise in continuous deterministic 
models. In this case, an alternative simulation algorithm 
is required. Although there are alternative exact simu-
lation algorithms, such as the next reaction method37, all 
exact algorithms become unusable in the context of 
challenging models.

Several approximate stochastic simulation algorithms 
have been proposed38–45, and this is currently an active 
area of research46–49. Such algorithms generate time 
course trajectories from the model that have a prob-
ability distribution similar, but not identical, to that of 
the stochastic kinetic model. One obvious approach is 
to form an approximation of the Markov jump process 
model, and to simulate that. Although there are many 
possible ways to do this, I focus here on one particularly 
interesting approximation that is obtained as the diffusion 
approximation of the process, known in this context as the 
chemical Langevin equation (ClE)50. This approximation 
is based on finding a diffusion process (described by a 
stochastic differential equation, SDE) that closely matches 
the dynamics of the Markov jump process. It is usually 
straightforward to simulate realizations from the ClE 
using numerical integration schemes similar to those used 
for ordinary differential equations51,52.

 Box 3 | exploitation of noisy gene expression by Bacillus subtilis

Noise in gene expression has particularly important consequences for small, 
single-celled prokaryotes. Like all organisms, they have evolved strategies for coping 
with noise. More interestingly, they have also evolved strategies for exploiting noise. 
Several interesting examples of these are exhibited by the Gram-positive bacterium 
Bacillus subtilis. Noise has a key role in the stochastic switching of the organism 
between vegetative and competent states104,105. Here, modelling shows that the 
existence of bistable fixed points (vegetative and competent) is not necessary, and 
that a model having one stable fixed point (vegetative) together with an excitable 
unstable one (competent) seems to be more consistent with experimental 
observations104. Noise associated with protein–DNA binding and unbinding is 
suggested as the key driver of the excitation dynamics.

Stochasticity in gene expression also seems to play an important part in the decision 
of whether to sporulate106, thereby ensuring that only a small subset of cells in a 
population commit to spore formation. Intracellular noise also drives the transient 
heterogeneity of extracellular protease production107.

In each case, it is optimal for the overall fitness of the isogenic cell population if only 
a small fraction of the individuals adopt the particular phenotypic trait, leading to a 
heterogeneous population containing many individuals that are well adapted to 
several possible changes in environment. B. subtilis, as many other single-celled 
organisms, uses noise to generate phenotypic heterogeneity in spite of uniform 
genetics and environmental conditions. In an uncertain world, this clearly improves 
the overall survival chances of the population. Stochasticity in gene expression is 
being used to generate inter-cell heterogeneity, which enables the population to cope 
with the stochasticity of the environment. Quantitative stochastic modelling is 
necessary to understand the relationship between the sources of noise and the 
distribution of population phenotypes.

Another phenotype adopted by only a small fraction of an isogenic population in 
good nutrient conditions is motility. Stochasticity is also key to enabling motile 
bacterial cells to navigate up nutritional gradients using chemotaxis. Each cell uses 
a ‘tumble and swim’ strategy — it switches randomly between a tumbling phase in 
which it randomly orients itself, and a swim phase, in which it swims in the direction 
it is currently oriented. By spending a longer, but still random, time swimming in 
directions where the nutritional concentrations increase, the cell effectively climbs 
the nutritional gradient. Intrinsic stochasticity in gene expression is the 
fundamental source of randomness in this strategy, and modelling can shed 
considerable light on the mechanisms108.
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Stochastic differential 
equation
(sDE). A mathematical 
equation involving both 
differential calculus and a 
stochastic process (typically 
Brownian motion). simple 
cases can be ‘solved’ exactly, 
but typically solutions must be 
generated using a stochastic 
form of numerical integration.

Numerical integration
An algorithm (typically 
implemented on a computer) 
for generating approximate 
solutions to ordinary 
differential equations.

Multiscale model
A model that spans multiple 
scales in space and/or time. 
such models generally require 
approximate algorithmic 
solutions, and are often 
computationally intensive.

Extrinsic noise
A crude categorization of 
stochasticity in biological 
systems that loosely 
corresponds to noise that  
can be controlled for.

Fluorescence-activated cell 
sorting
(FACs). An experimental 
technology that can be used 
to make quantitative 
measurements on a cell 
population with single-cell 
resolution. It is particularly 
useful for quantifying 
heterogeneity in cell 
populations.

unlike Markov jump processes, SDEs have continuous 
trajectories. Although the state of the ClE is a vector of 
real numbers, the process retains all of the stochasticity 
associated with the discrete Markov jump process (BOX 1). 
Injecting additional sources of uncertainty that vary over 
time (such as time-varying reaction rate ‘constants’) is par-
ticularly convenient with a ClE model. In addition, the 
speed at which realizations of the ClE can be generated 
makes it particularly attractive for use in multiscale models. 
Of course, the ClE is only an approximation to the associ-
ated Markov jump process, and so the question of model 
accuracy naturally arises. The ClE is tolerably accurate, 
except in cases in which the system is being strongly 
driven by a molecule at very low copy number (zero, one 
or two molecules, for example). To keep things in per-
spective, it is helpful to bear in mind that the discrepancy 
between an ‘approximate’ and ‘exact’ model will typically 
be substantially less than the discrepancy between the 
‘exact’ model and the real biological process.

The pragmatic approach adopted by many model-
lers is to begin by using an exact algorithm, and switch 
to an approximate algorithm only if computation time 
becomes prohibitive. As many simulation software pack-
ages incorporate both exact and approximate simulation 
algorithms, this is often a simple matter of selecting a dif-
ferent option. unfortunately there is little theory that can 
provide reassurance about the accuracy of the approxi-
mate algorithms in challenging scenarios, but most 
perform reasonably well in practice45. In the context of  
the p53 model14, it can take up to a couple of minutes  
of central processing unit (CPu) time on a fast compu-
ter to generate a single realization of 40 hours of simula-
tion time using an exact algorithm such as the stochastic 
simulation algorithm. Various approximate algorithms 
can reduce this time significantly, depending on the accu-
racy required. Sampling from a ClE approximation can 
reduce simulation time by more than two orders of mag-
nitude — reducing the CPu time to less than one second, 
albeit at the expense of an appreciable loss of accuracy.

Modelling across scales. Although much research effort 
is currently focused on stochasticity (both intrinsic and 
extrinsic noise53) at the single-cell level, the model-
ling framework extends readily to incorporate other 

important sources of heterogeneity at higher levels of 
biological organization. In the context of single-celled 
model organisms, this means heterogeneity in cell popu-
lation behaviour that could be attributed to a variety of 
sources, including noise at the single-cell level, but also 
minor genetic and epigenetic variations, and variations 
in environment (such as crowding or intercellular sig-
nalling variation). for higher-level organisms, such as 
the mouse, additional sources of heterogeneity are even 
more important. Although the experimentalists’ instinct 
to control for as many sources of potential heteroge-
neity as possible is well founded, we now understand 
that a degree of variation is unavoidable and must be  
incorporated into the models.

Through the development of integrated stochastic 
population models we can gain insight into the sources 
of heterogeneity in the system, and the extent to which 
noise in gene expression is propagated to observed het-
erogeneity at the population level54,55. furthermore, by 
developing realistic models of cell population behaviour, 
we can realistically consider using data on cell popula-
tions, such as fluorescence-activated cell sorting (fACS) 
data, to calibrate the parameters of the single-cell models 
that drive the integrated cell population model. However, 
naively implemented multiscale stochastic models will 
be computationally prohibitive, so work will need to be 
done to speed up simulation models, either by making 
approximations or by exploiting high-performance com-
puting facilities. ultimately, there is a desire to develop 
this approach from simple cell population models to 
models of tissues, organs and, ultimately, multicellular 
organisms.

Top-down statistical modelling
In parallel to the developments in stochastic modelling 
of biological processes, increasing use is being made of 
statistical estimation procedures for fitting high-level 
descriptive (top-down) statistical models to experimen-
tal data. Statistical methods are widely used in genet-
ics and bioinformatics, and provide a sophisticated 
framework for intelligent data analysis. In these areas, 
statistical models are often used to understand complex 
high-dimensional data sets. for example, they can help 
to identify candidate disease-causing genes on the basis 
of large genotyping data sets. Similarly, statistical tech-
niques are used to identify genes that are differentially 
expressed, or perhaps cell cycle regulated, on the basis 
of microarray experiments.

Statistical models allow information to be extracted 
from data despite complex structures and noise processes 
in the data56,57. Bayesian methods58,59 provide a particu-
larly powerful framework for analysis60–62. The bayesian 
approach, which will be described in greater detail in the 
subsequent sections, provides a fully probabilistic frame-
work for describing models and prior knowledge about 
parameters, which leads naturally to sensible estimates  
of parameter values and associated levels of uncertainty.

In computational systems biology, a key goal of statis-
tical modelling is to use high-throughput data to make 
inferences about the connectivity structure of the bio-
logical networks driving the data (for example, genetic 

 Box 4 | Sources of stochasticity and heterogeneity in budding yeast

The high degree of experimental tractability of Saccharomyces cerevisiae, and the 
availability of a variety of genome-wide libraries, makes it an ideal model for 
systematic study of noise in gene expression. There is compelling experimental 
evidence that noisy expression can often be detrimental to organismal fitness109, and 
that there is selective pressure to minimize it18. It seems that genetic factors can 
modulate noise levels, and so stochasticity can be regarded as a complex genetic 
trait19. In general terms, noise seems to scale with protein abundance110. Yeast is also a 
good system for investigating sources of biological noise and heterogeneity. These 
include transcriptional noise, translational noise, minor genetic and epigenetic 
variations, micro-environmental variations and lack or loss of cell cycle synchrony.  
By using a genome-wide yeast GFP library in conjunction with high-throughput flow 
cytometry, there is now experimental evidence that the principal source of 
stochasticity in yeast protein expression is transcriptional noise associated with the 
production and degradation of mRNAs111.
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Bayesian methods
Fully probabilistic methods for 
describing models, parameters 
and data. so called because 
extensive use is made of Bayes 
theorem to compute the 
probability distribution of 
model parameters given the 
experimental data.

regulatory networks and signalling pathways). Although 
this problem is reasonably well defined, developing a sat-
isfactory statistical framework for it is complex, largely 
owing to the combinatorial explosion of the number 
of possible connectivity structures as the number of 
potentially interacting partners increases. At a funda-
mental level, the problem remains largely unsolved. 
Nevertheless, there has been a great deal of useful work 
in this general direction.

Methods for bayesian network inference have 
been applied to microarray data. for data that is not 
time course, the techniques range from simple learn-
ing algorithms through to fully probabilistic methods. 
Some techniques63–67 require the conversion of continu-
ous quantities to categorical ones (for example, high/
low or up/down), which loses a lot of the information 
in the data. Conversely, methods that work with con-
tinuous data68,69 are potentially more powerful, but rely 
on stronger modelling and distributional assumptions 
(that is, more aspects of the data need to be modelled). 
Although there are many limitations associated with 
these approaches, the techniques can provide useful 
insight into statistical associations between variables in 
the absence of time course data67.

for time course data, such as some microarray exper-
iments, there is a much greater potential for uncover-
ing the causal influences driving the biological system 
dynamics, as it is possible to see how changes at one time 
point lead to changes in other properties at subsequent 
time points. Techniques used so far include methods 
for learning of dynamic bayesian networks applied to 
discretized data70,71 and methods for inferring continu-
ous models72. Opgen-rhein et al.72 applied the methods 
to a time course microarray experiment to investigate 
the effect of the diurnal cycle on starch metabolism in 
Arabidopsis thaliana. The inferred network contained 
some highly connected nodes that are indicative of  
co-regulation of groups of genes. The continuous models 
rely on an assumption of linearity, but this does not seem 
to be a major limitation in practice. This is a promis-
ing new area for research, and I believe that there will 

be important developments in the next year or two, 
including fully bayesian approaches to the problem, 
inspired by related work in other application areas, such 
as econometrics73.

Although such statistical modelling techniques are 
useful for giving insight into possible network structure, 
the models are rather simple compared with the mecha-
nistic stochastic models discussed in the earlier sections. 
In addition, the high-throughput data on which the 
models rely typically lack the resolution and precision to 
be useful for the quantitative estimation and calibration 
of detailed models of biochemical network dynamics.

Statistical inference for reaction networks
At the opposite end of the systems biology spectrum, 
there is considerable interest in using statistical methods 
to estimate parameters of detailed mechanistic (bottom-
up) biological models using quantitative time course 
data on the system. for example, the mechanistic p53 
model considered earlier contains many parameter val-
ues, such as initial conditions, reaction rates and binding 
constants, with values that are to some extent uncertain. 
The desire is to use time course experimental data to 
determine the values of these parameters that are most 
consistent with the data. These data are usually, although 
not necessarily74, generated in a low-throughput man-
ner, and typically involve measurements on only a small 
number of biochemical species (sometimes only one). It 
differs from typical high-throughput data as it has high 
time resolution, better calibration and lower experimen-
tal error. Ideally, these data will be at the level of a single 
cell16,75, although this is not a fundamental requirement, 
especially for deterministic models76. for the p53 model, 
the single-cell fluorescence time series data on p53 and 
MDM2 levels (FIG. 1a) is ideal.

Bayesian inference for deterministic models. researchers 
have been fitting deterministic models to time course 
data for decades, and many simple approaches are non-
statistical77. The simplest approach involves defining a 
‘distance’ between the model and the experimental data, 

 Box 5 | Stochastic modelling of cellular ageing

Many of the processes leading to cellular ageing are intrinsically random, and this makes ageing an especially 
appropriate target for stochastic modelling112,113. Although it is widely acknowledged that the ageing process is 
modulated by both genetic and environmental factors, the role of intrinsic chance is generally less well appreciated3. 
Nevertheless, in model organisms, the effect of chance seems to be considerable. For example, genetically identical 
Caenorhabditis elegans reared in uniform environmental conditions typically show as much as a twofold variation in 
lifespan across a population. Substantial variation in the lifespan of inbred laboratory mice strains is also observed. 
Although it is more difficult here to completely eliminate small genetic and environmental variations, it seems clear 
that intrinsic stochasticity again plays a significant part. The reason for this is that ageing is caused by low-frequency 
random events.

DNA damage occurs randomly, often caused by reactive oxygen species generated in the cell. Highly evolved repair 
pathways ensure the elimination of almost all damage, but occasional stochastic failures lead to the accumulation of 
random damage and the gradual loss of cellular function associated with ageing. Some basic mechanisms and 
principles can be studied in the context of model organisms such as budding yeast. For example, the accumulation of 
extrachromosomal ribosomal DNA circles has been implicated in yeast senescence54, and the biochemical response to 
telomere uncapping has been modelled in some detail114. Models for mammalian cells, including the action of 
chaperones115 and the p53–MDM2 system14, give more direct insight into processes associated with human ageing. 
Modelling can help to unravel the complexities associated with many interacting damage and repair processes 
contributing to the ageing phenotype, and to help separate out the individual effects116,117.
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Likelihood
The probability of the data 
given the statistical model and 
its parameters. In classical 
statistics it is often regarded as 
a function of the model 
parameters for given fixed 
experimental data.

Identifiability
The extent to which it is 
possible to accurately estimate 
model parameters given 
sufficient experimental data.

Confounded
Describes a problematic 
situation that arises when only 
a subset of a given set of model 
parameters is identifiable.

Model selection
The assessment of which 
model among a class of models 
has the most support on the 
basis of the available 
experimental data.

Markov chain Monte Carlo
(MCMC). A powerful class of 
algorithms that can be used to 
provide numerical solutions  
to most problems in Bayesian 
analysis. For complex problems 
they are notoriously 
computationally expensive, 
and many obscure techniques 
exist to increase the rate of 
convergence.

Posterior distribution
A probability distribution 
describing information about 
model parameters having 
taken into account all available 
information in the experimental 
data. From this it is possible to 
extract parameter estimates, 
together with associated levels 
of uncertainty.

and then tuning uncertain parameters to minimize the 
distance measure. The simplest version of this is a non-
linear least squares fitting approach. However, there are 
numerous problems with this approach that statistical 
methods can address. The statistical concept of likelihood  
provides the ‘correct’ way of understanding the discrep-
ancy between the model and the experimental data76. 
In deterministic models, the likelihood approach coin-
cides with the least squares approach precisely when all 
experimental measurement errors are assumed to be 
unbiased, independent and identically normally distrib-
uted. However, the likelihood concept provides a way of 
measuring distance in situations in which these strong 
assumptions do not hold.

Given that there is a (log–)likelihood function to 
optimize, there are other statistical issues that need  
to be considered even in the relatively simple case of 
deterministic models because of the nature of the likeli-
hood surface. Typically, this is flat in the vicinity of the 
optimum, suggesting that there are a range of model 
parameters consistent with the data and casting doubt 
on the wisdom of focusing on a single point estimate. 
The likelihood surface is sometimes completely flat in 
a particular coordinate direction, indicating a lack of  
identifiability of the model. A related issue is that there are 
often ‘ridges’ in the likelihood surface corresponding to  
confounded parameters. furthermore, the likelihood 
surface is often multimodal, with separated parts of 
parameter space providing adequate fits to the data. In 
addition, if there is some uncertainty regarding certain 
aspects of the model structure, then there is a statistical 
model selection problem that must somehow trade-off  
model fit against model complexity. All of the issues 
described here can be directly addressed using a 
bayesian statistical approach using Markov chain Monte 
Carlo (MCMC) techniques78–80.

bayesian inference combines prior information regard-
ing model parameters with information in the data (sum-
marized by the likelihood function) to form a posterior  
distribution. This describes the uncertainty regarding 
model parameters that remains after having observed the 
experimental data81. unfortunately this posterior prob-
ability distribution is, in general, analytically intractable 
for interesting problems. However, it is usually straight-
forward to construct MCMC algorithms82–84 that explore 
this distribution and that can be used to compute any 
numerical summaries of interest. Thus, bayesian meth-
ods provide much richer information about the relation-
ship between the model parameters and the data than 
can be provided by a direct optimization approach to the 
parameter tuning problem. SloppyCell78 and biobayes85 
are freely available examples of general purpose software 
for parameter inference for deterministic models using 
bayesian inference and MCMC.

The bayesian approach also offers a clean solution 
to model selection. In the context of the p53 example, 
two competing models have been developed — one 
based on ATM signalling and one using p14Arf14. In 
the absence of concrete expert knowledge about which 
of these is more plausible for a given cell line, it would 
be useful to know which model is most consistent with 

the available data. Calculation of the bayes factor using 
MCMC provides a quantitative answer to this question, 
and a computational solution for deterministic models 
is provided in REF. 80.

Inference for stochastic models. The benefits of statisti-
cal and bayesian approaches to inference are especially 
apparent when fitting the parameters of single-cell 
stochastic kinetic models to time course experimental 
data. Stochastic models contain many rate constants, 
and some are less well studied than classical determin-
istic enzymatic rate constants, meaning that it is often 
difficult to find plausible values for them in the litera-
ture. However, inappropriate values for rate constants 
can often lead to poor behaviour of the model, both in 
terms of average behaviour and the characteristics of 
the system noise. When tuning the parameters of sto-
chastic models, there is no obvious ‘distance’ function to 
optimize, owing to the fact that the likelihood function 
does not have a simple analytically tractable form. In this 
case, fairly sophisticated statistical analysis is required to 
make satisfactory progress with the parameter estima-
tion problem. Non-bayesian approaches to the problem 
must either try to approximate the likelihood86, or use 
computationally intensive Monte Carlo methods to esti-
mate it87. It is possible to develop exact bayesian infer-
ence methods for this problem using MCMC88, but the 
algorithms are computationally intensive and do not 
scale well to problems of realistic size and complexity. 
Although it is possible to speed up these algorithms 
somewhat by making some approximations89, methods 
that are based around the Markov jump process and are 
associated with the stochastic kinetic model are likely to 
be problematic.

As previously discussed, replacing the exact stochas-
tic model with an approximation (such as the ClE) can 
vastly reduce the computational problems associated 
with forwards simulation. The same technique can 
also be used for parameter inference. by replacing the 
Markov jump process with the ClE, the problem is 
changed from being that of estimating the para meters 
of a Markov jump process to one of estimating the para-
meters of a nonlinear multivariate diffusion process90.  
Although this is by no means a trivial problem, it is 
computationally amenable using sophisticated bayesian 
inference techniques91,92, and the resulting algorithms 
scale well to problems of realistic size and complex-
ity93,94. It is interesting that the inference techniques 
based on the ClE can work well even in situations in 
which one would not expect the ClE to be a particu-
larly good approximation to the Markov jump proc-
ess, at least in terms of forward simulation (BOX 6). 
Although the theory for SDE parameter inference is 
now well developed, there are few examples of such 
techniques being applied to real biological data. It is to 
be anticipated that many applications will appear in the 
literature in the near future.

Calibration of multiscale stochastic models. The tech-
niques discussed in the previous section are extremely 
powerful, and are of wide applicability to deterministic 
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Emulator
A fast surrogate for a more 
complex, and hence slower, 
computational model. 
Emulators are often used in 
place of the original model  
in iterative algorithms that 
require many model 
evaluations.

Time-discretized
The conversion of a continuous 
time model to a discrete time 
model, formed by considering 
the states of the continuous 
time model only at given 
discrete times.

models and also to stochastic models using time course 
data at the single-cell level. However, there are many 
situations in which it is desirable to tune the para meters 
of a stochastic multiscale cell population model so that 
it better matches the data available at the population 
level, such as fACS measurements. In other application 
areas, the problem of tuning the parameters of com-
putationally intensive simulation models is known as 
the model calibration problem95. MCMC algorithms 
typically take at least 106 times longer to run than it 
takes to forward simulate a single stochastic realiza-
tion from the model. It is therefore unrealistic to 
expect to directly use such algorithms in the context 
of large, complex multiscale stochastic biological  
models.

In this case it is helpful to look at how the calibra-
tion of large and complex computer models is tackled 
in other disciplines, such as the modelling of oil reser-
voirs96, weather forecasting and climate modelling97. In 
these scenarios, too, a direct fully probabilistic attack 
on the parameter inference problem is hopeless. 
However, sophisticated statistical procedures are still 
used in this context. In essence, output from the com-
puter model that is obtained using a limited number of 
runs from different, and carefully chosen, parameter 
values is used to statistically estimate a fast emulator of 
the full model. This emulator can then be used as an 
approximate surrogate for the full model in any infer-
ential procedure. In fact, this procedure can be a useful 
way of speeding up computations even in the context 
of a single cell, and was used to estimate the rate con-
stants of the stochastic p53 model described earlier, 
using the available single-cell time course data15.

There can be benefits associated with estimating the 
emulator and calibrating the model simultaneously95. 
Applications of these techniques to multiscale stochastic 
biological models are still in their infancy, but an exam-
ple is given by Henderson et al.98. They used a single-
cell model for the accumulation of mitochondrial DNA 
(mtDNA) deletions in a neuron of the substantia nigra 
region of the brain over time to generate a multiscale 
cell population model. An emulator is developed for 
this computationally intensive model, and the emulator 
is used in a bayesian inference algorithm together with 
experimental data on mtDNA deletions in human brain 
tissue samples to infer key parameters of the single-cell 
model, such as the deletion rate and the lethal threshold 
for mtDNA deletions.

fitting and exploiting stochastic emulators for mul-
tiscale model assessment and parameter inference is 
particularly challenging, as much of the necessary sta-
tistical theory has not yet been developed. However, the 
problem is of natural interest to statistical methodolo-
gists, and should therefore be an ideal opportunity for 
interdisciplinary collaboration.

Bridging the gap
It is of great interest to consider the possibility of devel-
oping an integrated framework for the simultaneous 
estimation of network structure and mechanistic model 
parameters using a combination of coarse-grained high-
throughput data and fine-grained low-throughput time 
course data. for example, we might wish to extend or 
improve a mechanistic model of p53 oscillations using 
time course microarray data obtained from a population 
of cells. Such an approach is currently a daunting pros-
pect, owing to the discrepancy between the high-level 
descriptive statistical models that are currently being used 
to analyse high-throughput data and the low-level mech-
anistic stochastic process models that are being used with 
fine-grained data, which represent the primary object of 
inferential interest. Again, the ClE offers a potential solu-
tion. The ClE connects directly with mechanistic models. 
However, it can be approximated by a tractable stochas-
tic process known as an Ornstein–uhlenbeck process99. 
This process can be time-discretized to give a model of the 
type sometimes used for inferring biological network 
connectivity72. There is therefore a natural sequence of 
directly comparable stochastic models, from bottom-
up mechanistic to top-down descriptive, each of which 
can be linked to experimental data to differing degrees. 
This perhaps offers a glimpse of how fully integrated  
statistical models might be constructed in the future.

Conclusions
This article has looked at two related developments in 
computational systems biology. The first is the move 
towards the use of stochastic models for describing bio-
logical system dynamics, and the implications of this 
for more realistic and multiscale modelling. realistic 
modelling of multiscale biological systems relies on the 
incorporation of the multiple sources of uncertainty, 
noise and heterogeneity that occur at different levels 
in the biological system. It is only by developing a fully 

Box 6 | Statistical methods for biochemical network models

Current approaches to using statistical methods to build quantitative dynamic models 
usually involve two or three stages. At the first stage, semi-quantitative high-throughput 
data is used to identify key biomolecules, and the nature of their interactions with other 
biomolecules (see figure). Dynamic statistical models can be used in conjunction with 
time course data to infer causal relationships. This information is used, together  
with existing literature, to form the qualitative structure of the reaction network. Data 
of this kind can also often be used to provide rough information regarding some model 
parameters, leading to a partially specified reaction network model. In the final stage,  
a quantitative reaction network model is calibrated against quantitative data to give a 
fully specified predictive dynamic model. Sophisticated statistical techniques are 
valuable at this stage too, especially if the model being calibrated is stochastic.
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integrated model of this nature that experimental data 
at the whole-system level can be used effectively to esti-
mate (that is, calibrate) model parameters and to assess 
the adequacy of the model. Therefore, completion of the 
iterative cycle of modelling and experimentation that is 
central to the systems biology approach actually requires 
integrated stochastic models of whole-system behaviour 
(see REFs 100,101 for a promising example). The develop-
ment of such integrated multiscale models will require 
significant developments in stochastic simulation tech-
nology. The use of fast, approximate stochastic simula-
tors will be necessary, as will the development of new 
techniques for simulating multiscale stochastic models.  
It is likely that statistically estimated stochastic emula-
tors will be used for some model components in cer-
tain situations to reduce the computational demands of 
the algorithms. Techniques for running large stochastic 
simulation models on high-performance computing 
facilities will also require development.

The second area of this article concerned statistical 
estimation of network structure and model parameters. 
Here the challenges ahead are similarly formidable. 

reliable simultaneous inference for network structure 
and kinetic parameters from a combination of high-
throughput time course data and fine-grained time 
course data is a clear short-term goal. In the medium 
term, the development of techniques for effective cali-
bration of large multiscale integrated stochastic models 
of complex biological systems is a key objective. In both 
cases sophisticated statistical methods will be required, 
and the problem structures make a bayesian approach 
the obvious choice. It is therefore likely that we will see 
a bayesian ‘revolution’ in computational systems biol-
ogy, similar to that already experienced in genetics102 and 
bioinformatics103.

The scientific community must recognize the piv-
otal role of statistics and statisticians in systems biol-
ogy research. No serious genetics laboratory or clinical  
trials unit would be considered complete without at least 
one expert statistical modeller. The contribution that a 
statistician can make to the success of a systems biology 
laboratory is every bit as great, but owing to the histori-
cal development of this new discipline, this fact has not 
been widely appreciated.
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