
4/9/13	

1	

Graphs

this is a flow chart, but it is
similar to a graph

Announcements
•  Huffman – Due April 16
•  You may have a partner

•  Burrows-Wheeler – Due April 18
•  You may use the same partner

•  Family Tree

2	

4/9/13	

2	

Today
•  Intro to graphs
•  Coding with graphs

3	

Trees

d	

k	 u	

e	 !	

4	

4/9/13	

3	

Graphs

d	

k	 u	

e	 !	

5	

Graphs
•  set of vertices
•  {1, 2, 3, 4, 5, 6}

•  set of edges
•  {(1, 2), (1, 4), (2, 5), (5, 3), (5, 6)}

1	

2	

3	

4	

5	

6	

6	

4/9/13	

4	

Graphs
•  directed graphs* – edge sets are ordered
•  {(1, 2), (1, 4), (2, 5), (5, 3), (5, 6)}
•  1 points to 2 – notice the arrow

•  (2, 1) is not an edge

*a.k.a. digraphs
1	

2	

3	

4	

5	

6	

7	

Graphs
•  undirected graphs – edge sets are not ordered
•  {(1, 2), (1, 4), (2, 5), (5, 3), (5, 6)}
•  (1, 2) is the same as (2, 1)

1	

2	

3	

4	

5	

6	

8	

4/9/13	

5	

Graphs
•  edges can have weights

1	

2	

3	

4	

5	

6	

4	

7	

2	

6	

3	

9	

Graphs
•  Why do you care?

10	

4/9/13	

6	

Graphs
•  Kevin Bacon

11	

Graphs

12	

4/9/13	

7	

Graphs

13	

Graphs
•  Traveling salesperson problem
•  Given a list of cities and the distance between

each pair of cities, what is the shortest possible
route that visits each city exactly once and returns
to the original city?

14	

4/9/13	

8	

Graphs
•  Depth-first-search
•  explore as far as possible before backtracking

Start at root!
!
dfs(vertex)!
 if(visited vertex) return;!
!
 visit vertex!
!
 for(adjacent vertices to vertex)!
 dfs(adjacent vertex)!
!
!

15	

Graphs
•  Depth-first-search
•  explore as far as possible before backtracking

Start at root!
!
dfs(vertex)!
 if(visited vertex) return;!
!
 visit vertex!
!
 for(adjacent vertices to vertex)!
 dfs(adjacent vertex)!
!
!

A B D F E C G!
! 16	

4/9/13	

9	

Graphs
•  Depth-first-search
•  explore as far as possible before backtracking

Start at root!
!
dfs(vertex)!
 if(visited vertex) return;!
!
 visit vertex!
!
 for(adjacent vertices to vertex)!
 dfs(adjacent vertex)!
!
!

A B D F E C G!
! 17	

Graphs
•  Depth-first-search
•  explore as far as possible before backtracking

Start at root!
!
dfs(vertex)!
 if(visited vertex) return;!
!
 visit vertex!
!
 for(adjacent vertices to vertex)!
 dfs(adjacent vertex)!
!
!

A B D F E C G!
! 18	

4/9/13	

10	

Graphs
•  Depth-first-search
•  explore as far as possible before backtracking

Start at root!
!
dfs(vertex)!
 if(visited vertex) return;!
!
 visit vertex!
!
 for(adjacent vertices to vertex)!
 dfs(adjacent vertex)!
!
!

A B D F E C G!
! 19	

Graphs
•  Depth-first-search
•  explore as far as possible before backtracking

Start at root!
!
dfs(vertex)!
 if(visited vertex) return;!
!
 visit vertex!
!
 for(adjacent vertices to vertex)!
 dfs(adjacent vertex)!
!
!

A B D F E C G!
! 20	

4/9/13	

11	

Graphs
•  Depth-first-search
•  explore as far as possible before backtracking

Start at root!
!
dfs(vertex)!
 if(visited vertex) return;!
!
 visit vertex!
!
 for(adjacent vertices to vertex)!
 dfs(adjacent vertex)!
!
!

A B D F E C G!
! 21	

Graphs
•  Depth-first-search
•  explore as far as possible before backtracking

Start at root!
!
dfs(vertex)!
 if(visited vertex) return;!
!
 visit vertex!
!
 for(adjacent vertices to vertex)!
 dfs(adjacent vertex)!
!
!

A B D F E C G!
! 22	

4/9/13	

12	

Graphs
•  Breadth-first-search
•  explore as far as possible before backtracking

Start at root!
!
bfs(vertex)!
 myQ.enqueue(vertex)!

!!
!
 while(!myQ.isEmpty()!

 v = myQ.dequeue!
 for(adj vertices of v)!
 if(adj not visited)!
 myQ.enqueue(adj) !

!

23	

Graphs
•  Breadth-first-search
•  explore as far as possible before backtracking

Start at root!
!
bfs(root)!
 myQ.enqueue(root)!

!!
!
 while(!myQ.isEmpty()!

 v = myQ.dequeue!
 for(adj vertices of v)!
 if(adj not visited)!
 myQ.enqueue(adj) !

!

A B C E D F G!
! 24	

4/9/13	

13	

Graphs
•  Breadth-first-search
•  explore as far as possible before backtracking

Start at root!
!
bfs(root)!
 myQ.enqueue(root)!

!!
!
 while(!myQ.isEmpty()!

 v = myQ.dequeue!
 for(adj vertices of v)!
 if(adj not visited)!
 myQ.enqueue(adj) !

!

A B C E D F G!
! 25	

Graphs
•  Breadth-first-search
•  explore as far as possible before backtracking

Start at root!
!
bfs(root)!
 myQ.enqueue(root)!

!!
!
 while(!myQ.isEmpty()!

 v = myQ.dequeue!
 for(adj vertices of v)!
 if(adj not visited)!
 myQ.enqueue(adj) !

!

A B C E D F G!
! 26	

4/9/13	

14	

Graphs
•  Breadth-first-search
•  explore as far as possible before backtracking

Start at root!
!
bfs(root)!
 myQ.enqueue(root)!

!!
!
 while(!myQ.isEmpty()!

 v = myQ.dequeue!
 for(adj vertices of v)!
 if(adj not visited)!
 myQ.enqueue(adj) !

!

A B C E D F G!
! 27	

Code time
•  snarf today’s code
•  this will be helpful for APT set 7

28	

4/9/13	

15	

Before you go
•  How are things going?

•  http://goo.gl/CAZEb

29	

