Learning and Approximating
the Optimal Strategy to Commit To*

Joshua Letchford, Vincent Conitzer, and Kamesh Munagala

Department of Computer Science, Duke University, Durha@, NSA
{jcl,conitzer, kanesh}@s. duke. edu

Abstract. Computing optimal Stackelberg strategies in general tlaggy Bayesian
games (not to be confused with Stackelberg strategies tmgpgames) is a topic
that has recently been gaining attention, due to their eaftin in various se-
curity and law enforcement scenarios. Earlier results idenghe computation

of optimal Stackelberg strategies, given that all the payahd the prior dis-
tribution over types are known. We extend these results mdifferent ways.
First, we considetearning optimal Stackelberg strategies. Our results here are
mostly positive. Second, we consider computipgroximatelyoptimal Stackel-
berg strategies. Our results here are mostly negative.

1 Introduction

Game theory defines solution concepts for strategic sitngtiin which multiple self-
interested agents interact in the same environment. Petthapbest-known solution
concept is that oNash equilibrium{11]. A Nash equilibrium prescribes a strategy for
every player, in such a way that no individual player has aentive to change her
strategy. If strategies are allowed to be mixed—a mixedexisais a probability distri-
bution over pure strategies—then it is known that everydigéme has at least one Nash
equilibrium. Some games have more than one equilibriundimegto theequilibrium
selection problem

Perhaps the most basic representation of a game isotmeal form In the normal-
form representation, every player’s pure strategies apdioitky listed, and for every
combination of pure strategies, every player’s utility xplcitly listed.

The problem ofcomputingNash equilibria of a normal-form game has received
a large amount of attention in recent years. Finding a Nasglililequm is PPAD-
complete [6, 1]. Finding an optimal equilibrium (for justali any reasonable definition
of “optimal’—for instance, maximizing the sum of the plageutilities) is NP-hard [7,
3]; moreover, it is not even possible to find an equilibriumttis approximately optimal
in polynomial time, unless P=NP [3]. This holds even for tplayer games.

However, Nash equilibrium is not always the right solutimmcept. In some set-
tings, one player can credibly commit to a strategy, and canioate this to the other
player, before the other player can make a decision. To seetlis can affect the

*Some of these results were briefly presented as part of atttilke 2009 Bellairs Workshop
on Algorithmic Game Theory. This work is funded by: Alfred$toan Research Fellowships,
NSF Grant 11S-0812113, NSF Career Award 0745761 and Grar8-Gb#0347.

outcome of a game, consider the following simple normatafgame (which has pre-
viously been used as an example for tleigy, [2]):

(1,0) (0.1)
I R (U)

U\|(2,1)(4,0)

D|(1,0)(3,1)

2,1 4,0 15,5 35, 5 1,0 3,1

Fig. 1. A sample game and its extensive form representation

For the case where the players move simultaneously (nayablicommit), the
unique Nash equilibrium i€, L): U strictly dominated, so that the game is solvable
by iterated strict dominance. So, player 1 (the row playecgives utility2. However,
now suppose that player 1 has the ability to commit. Thenjsshetter off committing
to play D, which will incentivize player 2 to play, resulting in a utility of3 for player
1. The situation gets even better for player 1 if she can cdnond mixed strategy: in
this case, she can commit to the mixed stratedy- ¢, .5 + ¢), which still incentivizes
player 2 to playR, but now player 1 receives an expected utility3df — e. To ensure
the existence of optimal strategies, we assume (as is colgmione [2, 12]) that player
2 breaks ties in player 1's favor, so that the optimal styafeg player 1 to commit to
is (.5,.5), resulting in a utility of3.5. (Note that there is never a reason for player 2
to randomize, since he effectively faces a single-agerisigcproblem.) An optimal
strategy to commit to is usually calledsdackelbergtrategy, after von Stackelberg, who
showed that in Cournot’s duopoly model [4], a firm that can nuotrto a production
quantity has a strategic advantage [15]. Throughout ttpepa Stackelberg strategy is
an optimalmixedstrategy to commit to; we will only consider two-player gamia this
context, the Stackelberg leader’s expected utility is gibvat least the expected utility
that she would receive in any Nash (or even correlated) ibgiuim of the simultaneous-
move game [16]. In contrast, committing to a pure strategyisalways beneficial; for
example, consider matching pennies.

One may argue that the normal form is not the correct reptaen for this game.
In game theory, the time structure of games is usually reptes by thextensive form
Indeed, the above game can be represented as the extemsivgdme in Figure 1.
While this is a conceptually useful representation, frornmputational perspective itis
not helpful: player 1 has an infinite number of strategieacledthe naive representation
of) the tree has infinite size. It should be emphasized thatwaitting to a mixed strategy
is notthe same as randomizing over which pure strategy to commiit fact, there is
no reason to randomize over which strategy to commit to. ;Tias a computational
viewpoint, it makes more sense to operate directly on thenabform.

The problem of computing Stackelberg strategies in gemenahal-form (or, more
generally, Bayesian) games has only recently started &veattention. A 2006 EC pa-
per by Conitzer and Sandholm [2] layed out the basic comiyleasults for this setting:
Stackelberg strategies can be computed in polynomial ttmevo-player general-sum

normal-form games using linear programming (in contragh problem of finding
a Nash equilibrium), but computing Stackelberg strategi@$P-hard for two-player
Bayesian games or three-player normal-form games. Urréetéry the NP-hardness
result, Paruchust al.[12] developed a mixed-integer program for finding an (optim
Stackelberg strategy in the two-player Bayesian case étimg that we study in this
paper). They show that using this formulation is much fastan converting the game
to normal form (leading to an exponential increase in size) then using the linear
programming approach. Moreover, this algorithm forms thasid for their deployed
ARMOR system, which is used at the Los Angeles Internatidglort to randomly
place checkpoints on roads entering the airport, as wel aetide on canine patrol
routes [9, 13]. The use of commitment in similar games dasek lnuch further, in-
cluding, for example, applications to inspection gameg.[Ife formal properties of
various types of commitment are also studied in [8].

It should be noted that Stackelberg strategies are a géraiah of minimax strate-
gies in two-player zero-sum games. Because computing raikstrategies is equiva-
lent to linear programming [5], this also implies that a Angorogramming solution
for computing Stackelberg strategies is the best that weéhoge for. Of course, Nash
equilibrium is an alternative generalization of minimasagtgies. Stackelberg strate-
gies have the significant advantage that they avoid theibguih selection problem:
there is an optimal value of the game for the leader (playewhjch in general cor-
responds to a single optimal strategy (though not in degeé@eases). The notion of
“Stackelberg strategies” has appeared in other contexkeialgorithmic game theory
literature, specifically, in the context of routing gamebgre a single benevolent party
controls part of the flow, and commits to routing this flow in armer that minimizes
total latency [14]. While interesting, that paper does r@irs that closely related to our
work, because in our context, the leader is a selfish playan arbitrary game.

The rest of this paper is layed out as follows. In Section 2favmally review the
necessary concepts, introduce our notation, and discisiBigxesults that are relevant.
In Section 3—the first half of our contribution—we prove saleesults aboutarning
Stackelberg strategies, in contexts where the followenfiayand/or the distribution
over types is not known initially. In Section 4—the secontf b&our contribution—
we consider purely computational problems and give (injaximability results.

2 Preliminaries

In this section, we review notation and existing results.

2.1 Notation and definitions

We will refer to player 1 as thkeaderand to player 2 as thillower. Let A; be the
set of leader actions in the ganjel{| = d), and let4; be the set of follower actions
(JA¢| = k). The leader’s utility is given by a functiom, : A; x Ay — R. When we
are studying approximability, we (wlog) require all thedeautilities to be nonnegative
(to make multiplicative approximation meaningful). In ayBaian game, the follower
has a set ofypes®© (|©| = 1), which, together with the actions taken, determine his
utility, according to a function,y : © x A; x Ay — R. For simplicity, we will not

consider situations where the leader’s utility also degemdthe follower’s type; this
restriction strengthens our hardness results. We will tefthese aBayesiargames; a
normal-formgame is the special case where there is only a single type.

o denotes a mixed strategy for the leader, atg}) the probability that places on
actiong;. Let BR(§,0) € Ay denote the action that the follower plays (that is, his best
response, with ties broken in favor of the leader) when hpg ig6 and the leader has
committed to playingr. We note that

BR(6,0) € arg max o(a)us(f,ai,ar)

The BR function also captures the fact that the follower ksd#es in the leader’s favor.
Given the follower typd, the leader’s expected utility is

Z o(a)ui(a;, BR(6,0))

al€A;

Given a prior probability distributiod® : © — [0, 1] over follower types, the leader’s
expected utility for committing te is

> PO) > ola)w(a,BR(O,0))

0cO a €A

When we take a worst-case perspective, we will be interéstedetting with types but
without a prior distribution over them (also known apra-Bayesiargame).

2.2 Known results and techniques

In this subsection we review the most relevant prior work. &mormal-form game,
the optimal mixed leader strategy can be computed in polyaldime, as follows* for
every follower actioruy, the following linear program (whose variables are dtte;))
can be used to determine the best leader strategy that niekeslower playa ;.

maximize ", o(ai)wi(ar, ay)

subject to
(V%) >, olaug(a,ap) =2 32, ola)us(ar, a’)
Y ola) =1

(Vay) o(a;) >0

Some of these linear programs may be infeasible (it is iniplesto make a follower
play a strictly dominated strategy), but some will be feksikhe solution of the one
with the highest objective value gives the optimal mixedtstgy for the leader.

For Bayesian games (with a prior), the problem of computimgdptimal mixed
leader strategy is known to be NP-hard [2]. However, th&tety can be found using a
mixed integer program [12].

IThis algorithm was presented in [2]. Some of the analysiéhis based on similar insights.

2.3 Visualization

In this subsection, we show how the problems we discussectatam be visualized. Let
us consider the normal-form case. The space of possibtegiea for the leader defines
a unit simplex ind — 1 dimensions, wheré is the number of leader actions. For each
strategy of the leader, the follower has a best responsesfdee of leader strategies
for which the follower’s best response ag defines a (possibly empty) polyhedron.
Therefore, thel-simplex splits into at most (number of follower actions) polyhedral
regions, based on the follower utility function. Each ofg¢beegions corresponds to the
feasible region of one of the linear programs, and the obgdf that linear program
can be represented as an arrow in the region.

Let us consider the following small example and its visialan.

(0,1,0)

L|C|R

(0,1)(1,0)(0,0
(4,0)(0,1)(0,0
(0,0)(T,0)(1,1

OIE S

(1,0,0) (0,0,1)

Fig. 2. A small game and its visualization

Each dot in Figure 2 represents the optimal point (leadeethistrategy) within
each region (which lie oseparating hyperplanesr on the boundary); the largest dot
(.5,.5,0) shows the optimal point overall.

The Bayesian case can be visualized in (at least) two diffavays. A simple way
is to have a separate unit simplex for every type; this doesegire a prior distribution
over types (that is, it works for pre-Bayesian games). If¢he a prior distribution over
types, another way is to have a region for each element ofethefsll pure strategies
for the follower, so tha(aff, ...,a%") corresponds to the region where tyjJés best

response iaff, typed?'s best response 'tsjf, etc. The arrows in this region represent
the objective, which depends on the prior. This represemtatoes not work for pre-
Bayesian games where we take a worst-case perspectivededba optimal point may
be in the interior of a region.

3 Learning Stackelberg strategies

If a game is repeated over time, this opens up the possilfdityhe leader to learn
something about the follower’s utilities or the distritlartiover types. To avoid the pos-
sibility that the follower tries to mislead the leader ovien¢, we imagine that a new
follower agent is drawn in every round. Alternatively, tlalédwer can be assumed to
behave myopically. In around, the leader commits to a mikedegyy, and subsequently
observes the follower’s response. The leader’s goal isaimlenough to determine the
optimal Stackelberg strategy, in as few rounslsniple}as possible.

Due to space constraint, we focus on the case with a singk that is, in each
round, the follower has the same payoff matrix, givendya;, a), initially unknown
to the leader. In each round, the leader commits to a mixategtyoc and learns the

follower’s response. We say that the leadeeriesor sampleghe pointo on the prob-
ability simplex. The goal is to minimize the number of sangphecessary to find the
optimal (Stackelberg) mixed strategy for the leader. In é&mgtices B and C we con-
sider two other cases with more than one type, one where ddetaeeds to learn the
follower payoff function, and one where this function is kg but the leader must
discover the distribution over types. We make the followasgumptions:

— The follower utilities are non-degenerate; no separatyyggehplanes coincide.

— We will only consider regions whose volume is at least soraetione > 0 of the
total volume, and try to find the optimal solution among psintthese regions. (It
can be argued that solutions in smaller regions are too biestalternatively, we
can simply assume that every nonempty region has at leastghime.)

— We assume that the optimal solution can be specified exagitig a limited amount
of precision quantified by.. This allows us to bound the number of iterations of
binary search needed to calculate these hyperplanesyxadillinear multiple of
L.

Our approach will be to learn all the regions (whose volumatiteaste of the
total)—that is, find all hyperplanes separating these regi®nce we know these, the
optimal strategy can be computed using the linear programagproach above.

A high-level outline of our algorithm SU is as follows. Forogafollower action
ay € Ay, the algorithm maintains an overestiméig of the region where is a best
response. It then refines these overestimates via samptitigthey are disjoint.

SuU

1. For eachuy € Ay, find a point (leader strategy),, in the d-simplex to whicha
is a best response (provided the corresponding regionfisisatly large).

2. Initially, eachP,, is the entirel-simplex.

3. Repeat the following until alF’,, are disjoint:

(a) Find a poinp* in the intersection of somg,, andP,.

(b) Sample to obtain the optimal follower strategyatcall it a}.

(c) Draw a line segment betweeh and somey,, for ay # a},ay € {a},a’f};
perform binary search on this line to find a single point on pdrplane that
we have not yet discovered.

(d) Find a set off linearly independent points on the hyperplane, and hence re
construct it.

(e) Update the’, , to take this new hyperplane into account.

We now describe the steps of SU in detail.
Step (1).Finding a point in each region (with at leastf the volume) can be achieved
via random sampling, via the following lemma.

Lemma 1. It takesO(F'k log k) samples to w.h.p. (with high probability) find a single
pointin each sufficiently large region, whefe= 1/e¢.

Proof. The probability that a randomly chosen point correspondsliower actiona
is at leask. Therefore, for any constant intege> 1, after((c + 1) F log k) samples,

the probability that follower action is not hit is at mos()e+1. By a union bound,
the probability that at least one action is not hitis at n(c%s)f

no

Fig. 3. Finding a hyperplane.

Step (3 a—c) Consider two overestlmate& andP, % that have nonzero overlap vol-
ume. By Step (1), we may assume that we have sampled a@ouﬂnat led to a re-
sponse ofz’ (thatis da, is in the region corresponding tx}) and a pomt;a// that led
to a response af. Both of these overestimates are characterized byfieandH "

of hyperplanes that we have previously discovered. We neéistover a new hyper-
plane. It will not suffice to do binary search on the line segtibetween the two starting
points, as illustrated by Figure 3, which illustrates aatiton where we have discovered
two of the hyperplanes of Figure 2. If we do binary search enlitie segment between
the two indicated points, we cannot discover the missingehylane, because the top
region “gets in the way” (another action, namélywill start being the best response).
However, if we sample from the shaded $gtN Pg, the result will be different from
one of the two points; then, by performing binary search anlitre segment between
this point and the new point, we will find a point on a new hygene. The follow-
ing algorithm formalizes this idea. In it, we do not assumeg the two overestimates
overlap.

FIND POINT

1. Solve a linear program to find an interior pojit of Pa/f N Pa;; given the con
straintsH’ U H”. (If this is not feasible, return failure.)
2. Sample this point and let the follower strategy returned’jp
(@ If ay = af, search the line segment betweghand Gaty for a point on 3
hyperplane that has the region correspondm@f’t@djacent on one side, via
binary search.
(b) Otherwise, search the line segment bet\/\weandqa} for a point on a hypet
plane that has the region correspondingf;mdjacent on one side, via bingry
search.

Lemma 2. Given overestimateB and P, 7 on the regions corresponding tq(and
af, and pOIntSq,, andq(,n in these respectlve regionSIND POINT will either give a

point on a new hyperplane for one of the regidhls;_ or Pa/f{, or will return that Pa/f
and P, already have zero intersection volume. This requidé) samples. '

The detailed proof is in Appendix A.

Step (3d).In this step, the input is a poipton the hyperplane that we need to recon-
struct, and the two follower actiora§ anda}’ that correspond to the regions separated
by this hyperplane. The following BrerMINE HYPERPLANEfinds the hyperplane.

DETERMINE HYPERPLANE

1. Sample the vertices of a regutasimplex with sides of lengtl < ¢, centered at
p. (Draw this simplex uniformly at random among such simige

2. Organize the vertices of this simplex into two séf§,and V" according to the
region they fall in. (Both of these sets will be nonempty.)

3. Choosel distinct pairs of points where one of the points idihand the other i
inv”

4. Binary-search thé line segments formed by these pairs, to find the points where
these line segments intersect the hyperplane.

"2

Lemma 3. DETERMINE HYPERPLANE WiIll give d linearly independent points on the
hyperplane using(dL) samples.

Proof. First, consider thel + 1 vertices of thed-simplex centered agb. Sincec’ is
sufficiently small, all of the points fall into one of the twegions (and since the simplex
is chosen at random, there is zero probability of one of titoes being exactly on the
hyperplane). Since the hyperplane goes thropgat least one of the vertices of the
simplex will fall into each region. As a result, there areestdid line segments between
vertices of the simplex where the two vertices of the segptuce different follower
actions. Finally, the points where the hyperplane intassedth these line segments
must be linearly independent; otherwise, the simplex wawtibe full-dimensional.
Furthermore, the number of samples needed to find the hyperphtersecting point
on a line segment via binary search is lineaLinrhis completes the proof.

With these tools, we can give our main result for this problem

Theorem 1. To find, w.h.p., all the hyperplanes that separate regions,r&juires
O(Fklogk + dk®L)) samples, wherd” = 1/e, ¢ is the smallest volume of regions
that we considetl is the precision, and& = |A;|. Computationally, this requires the
solution ofO(k?) linear programs.

Details of the proof are in Appendix A. Once we have generalidtie hyperplanes
that separate regions, we can use the known linear prognagrapproach described in
Subsection 2.2 to find the optimal mixed strategy to commit to

4 Computing Stackelberg strategies

In this section, we consider how different modeling assuomgt affect the computa-
tional tractability and approximability of the Stackelggsroblem with multiple fol-
lower types. Unlike the previous section, this section domsconsider learning prob-
lems at all: it focuses strictly on the computational aspe€the optimization. Because
of this, we only consider a single-round setting in this isect

The following aspects of the model will remain the same tigiaut this section.

— We consider two-player, general-sum games that have maneotte follower type.

— The leader’s utility does not depemtirectly on the follower’s type (but it does
depend on the follower’s action, which can be affected byfdHewer’s type).

— The follower’s utility functionu (6, a;, a¢) is common knowledge.

We consider two modeling decisions. The first decision corewhether the type
space is discrete or continuous. For the discrete case, suenasthat we have a finite
number of types, which are explicitly listed. For the contins case, we assume that
the space of possible types is defined by a lower bound and per ippund for the
follower’s utility for each action profilda;, as); every follower payoff matrix that is
consistent with these bounds corresponds to some type.

The second modeling decision is whether the follower tympdsen according to a
Bayesian model or an adversarial (worst-case) model. Matiethe “adversary” isot
one of the players of the game, in particular, the adverszhytze follower are different.

4.1 Computing Bayesian optimal strategies with finitely mag types

In this subsection we study how to compute the optimal mixestegy when the fol-
lower’s type is drawn from a known distribution over finitetyany types. We refer to
this problem a8ayesian optimization for finite types (BOEFBOFT is defined as:

— We have a seP of possible follower typegpP| = .

— The follower’s utility functionu (6, a;, a¢) is common knowledge.

— Both the follower’s utility functionu (6, a;, ay) and the leader’s utility function
uy(0,ar,ar) are normalized to lie in [0,1] for all inputs.

— The prior over follower type$’(9) is common knowledge.

— An optimal leader strategy is one that maximizes the leadapected utility.

This problem was first studied in [2], where it was shown to B&ard. It also
forms the basis for much of the applied work on computing I&ilierg strategies [9].
However, to the best of our knowledge, the approximabilitihts problem has not yet
been studied. We settle the approximability precisely is $hibsection.

Theorem 2. For all constante > 0, no polynomial-time factor!—¢ approximation
exists for BOFT unless NR P, even if there are only two follower actions.

This hardness of approximation can be shown by a reduction fMAX-INDEPENDENT-
SET. In this reduction, vertices correspond to types, aeddhder cannot incentivize
two adjacent types to both play a desirable action. The &dlction appears in Ap-
pendix D.

Theorem 3. There is a polynomial-time factar-approximation algorithm for BOFT.

A simple algorithm that achieves this is the following: ceBea type uniformly at
random, and solve for the optimal mixed strategy to commibtacthis specific type
(using the linear programming approach). With probabilify-, we choose the type
that is actually realized, in which case we perform at leastell as the optimal overall
strategy. Hence, this guarantees at leashpproximation. Details and derandomization
appear in Appendix D.

4.2 Computing worst-case optimal strategies with finitely rany types

A prior distribution over follower types is not always relyhvailable. In that case, we
may wish to optimize for the worst-case type (equivalenltig, worst-case distribution
over types). We note that the worst-case type depends on ittesl retrategy that we
choose, so that this is not the same problem as optimizinmstga single type. We
refer to this problem aworst-case optimization for finite types (WOFT)

— We have a seb of possible follower typegP| = .

— The follower’s utility functionu (6, a;, a¢) is common knowledge.

— An optimal leader strategy is one that maximizes the woaseexpected utility
for the leader, where the worst case is taken over followgedybut we are taking
the expectation over the mixed strategy). That is, an adwer®ot equal to the
follower) chooses the follower type after the leader mixedtegy is chosen, but
before the pure-strategy realization.

It turns out that WOFT is even less approximable than BOFT.

Theorem 4. WOFT is completely inapproximable in polynomial time, sal®=NP
(thatis, it is hard to distinguish between instances whied¢ader can get at leastin
the worst case, and instances where the leader can onl§)geéven if there are only
four follower actions.

This can be shown by a reduction from 3-SAT. In the resultiaghg, the leader can
obtain an expected utility of against every type if the 3-SAT instance is satisfiable,
and otherwise will obtain utility) against some type. The full reduction appears in
Appendix D.

4.3 Optimizing for the worst type with ranges

So far, we have assumed that the space of possible typesréesesped by explicitly
listing the (finitely many) types and the correspondingitigs. However, this repre-
sentation of the uncertainty that the leader has over thewel's preferences is not
always convenient. For example, the leader may have a raleghdf every follower

payoff, which could be represented by a range in which thgdfhanust lie. This cor-

responds to a continuous type space for the follower: evelting of all the follower

payoffs within the ranges corresponds to a type.

In this subsection, we study the problem of maximizing thedkr’s worst-case
utility over all types (instantiations of the follower pa§®within the ranges). Later in
the subsection, we also consider a generalization whefeltbeer payoffs in different
entries can be linked to each other.

For example, consider the following game with ranges:

L R
Ulo,[L,2] 1,0
D[1,0 |0, [1,2]

The leader is unsure about the follower’s utility {éf, L) and(D, R), each of which is
known to lie somewhere in the ranfje 2] (they can vary independently). The follower
knows his utilities. If the leader places less tHd8 probability onU, then the follower
is guaranteed to plai; this results in a utility of at most/3 for the leader. If the leader

places more thad/3 probability onU, then the follower is guaranteed to play this
results in a utility of at most /3 for the leader. If the leader places probability between
1/3 and2/3 on U, then the follower may end up playing eitheror R; by placing
probabilityl/2 on U, the leader obtains an expected utilitylg®, which is optimal.

We refer to this problem asorst-case optimization for range types (WORT)

— For every(a;, ay), the leader has a range in which the follower utility miglet, li
ug(ar, af) € [ul(ar, ay), uf(ar, ay)]. The leader knows her own utilities(a;, ay).

— An optimal leader strategy is one that maximizes the woase@xpected utility for
the leader, where the worst-case values of

Theorem 5. WORT is NP-hard.

This follows from a reduction from 3-COVER, which is presashin Appendix D. Itis
an open question whether WORT can be efficiently approxichdteAppendix E, we
define a generalization of WORT, which we prove is inappratite unles? = N P.
This generalization allows the follower’s payoffs to bekka across entries.

5 Conclusion

Computing optimal Stackelberg strategies in general tlagqr Bayesian games is a
topic that has been gaining attention in recent years, dtletoapplication in both se-
curity and law enforcement. Earlier results consider thamatation of optimal Stack-
elberg strategies, given that all the payoffs and the pristridution over types are
known. We extended these results in two ways.

First, we considerel@arningoptimal Stackelberg strategies. We first considered the
normal-form case where the follower payoffs are not knowt simowed how we can
efficiently learn enough about the payoffs to determine thiintal strategy. We then
extended this to Bayesian games. We also considered thembese the payoffs are
known, but the distribution over types is not. We showed hawan efficiently learn
enough about the distribution to determine the optimatestpa It must be admitted that
it is debatable whether this framework for learning is prattfor current real-world se-
curity applications, since the costs incurred during tlaerleng phase may be too high;
however, these costs may be more manageable in electranimerce applications.

Second, we considered computiagproximatelyoptimal Stackelberg strategies.
Our results here were mostly negative: we showed that thigpbesible approximation
ratio that can be obtained in polynomial time for the stadd2ayesian problem is,
the number of types, unless NP = P. Optimizing for the wonsé tisg completely inap-
proximable in polynomial time, in the sense that we cannstirjuish instances where
we can guarantee utility from instances where it is impossible to guarantee positive
utility, unless P=NP. We also studied a different repression of uncertainty about the
follower’s payoffs that relies on ranges, and showed théitping for the worst case
is NP-hard in the basic setting, and completely inapprokima a generalized setting
where the payoffs are linked. These negative results pecsidne justification for the
use of worst-case exponential-time algorithms in this esttsuch as those that use
mixed integer programming.

Two immediate directions for future research are: (1) itigasing the approx-
imability of the basic ranges problem, and (2) considerhgyianges problem in the

Bayesian case (rather than the worst case). There are miagryditections for future
research, for example, studying the number of samplesnedjto learrapproximately
optimal strategies, investigating the case where thereare than two players, and/or
computing optimal Stackelberg strategies when the nororah has exponential size,
but the game is concisely represented.

References

10.

11.

12.

13.

14.

15.
16.

17.

. Xi Chen and Xiaotie Deng. Settling the complexity of twayrer Nash equilibrium. In

FOCS pages 261-272, 2006.

. Vincent Conitzer and Tuomas Sandholm. Computing ther@tstrategy to commit to. In

Proceedings of the ACM Conference of F@ges 82—-90, Ann Arbor, MI, USA, 2006.

. Vincent Conitzer and Tuomas Sandholm. New complexityltesabout Nash equilibria.

Games and Economic Behavi@®3(2):621-641, 2008.

. Antoine Augustin CournotRecherches sur les principes mathématiques de la théese

richesses (Researches into the Mathematical PrincipléiseoT heory of Wealth)1838.

. George Dantzig. A proof of the equivalence of the programynproblem and the game

problem. In Tjalling Koopmans, editoictivity Analysis of Production and Allocatippages
330-335. John Wiley & Sons, 1951.

. Constantinos Daskalakis, Paul Goldberg, and Christd®adadimitriou. The complexity of

computing a Nash equilibrium. IBTOC pages 71-78, 2006.

. Itzhak Gilboa and Eitan Zemel. Nash and correlated dayigti Some complexity consider-

ations.Games and Economic Behav,idr.80-93, 1989.

. Paul Harrenstein, Felix Brandt, and Felix Fischer. Cotmmaint and extortion. IfProceed-

ings of AAMASHonolulu, HI, USA, 2007.

. Manish Jain, James Pita, Milind Tambe, Fernando Orl6Reaveen Paruchuri, and Sarit

Kraus. Bayesian Stackelberg games and their applicatiogefrrity at Los Angeles inter-
national airport.SIGecom Exch7(2):1-3, 2008.

Michael Maschler. A price leadership method for soluimg inspector’s non-constant-sum
game.Naval Research Logistics Quartert{3(1):11-33, 1966.

John Nash. Equilibrium points in n-person ganfe®ceedings of the National Academy of
Sciences36:48-49, 1950.

Praveen Paruchuri, Jonathan P. Pearce, Janusz Mavdakil Tambe, Fernando Ordofiez,
and Sarit Kraus. Playing games for security: an efficienteai@orithm for solving Bayesian
Stackelberg games. Proceedings of AAMA®ages 895-902, Estoril, Portugal, 2008.
James Pita, Manish Jain, Fernando Ordbfez, Christéidrtway, Milind Tambe, and Craig
Western. Using game theory for Los Angeles airport secutitiag., 30(1):43-57, 2009.
Tim Roughgarden. Stackelberg scheduling strategieSTOGC pages 104—-113, New York,
NY, USA, 2001. ACM.

Heinrich von Stackelberdvarktform und GleichgewichtSpringer, Vienna, 1934.

Bernhard von Stengel and Shmuel Zamir. Leadership wittngitment to mixed strategies.
Research Report LSE-CDAM-2004-01, London School of Ecdosnfrebruary 2004.
David Zuckerman. Linear degree extractors and the naxppability of max clique and
chromatic numberTheory of Computing3(1):103-128, 2007.

APPENDIX

A Omitted proofs from Section 3

Lemma 2. Given overestlmateé’ and P, 7 on the regions corresponding tdgc and
af, and pointsy, andqan in these respectlve regionSIND POINT will either give a
point on a new ﬁyperplane for one of the regldh§ or Pa}/, or will return that P, o)

andPa}g already have zero intersection volume. ThIS requires ati®of) samples.

Proof. If no interior point is found, then the intersection volumeishbe zero. Now
consider the more interesting case when a ppfnis found. Leta” be the follower
action produced by this point. There are three possitsligéthera’ = af, ay = af or

a} is not equal to either. Let us consider the first case, wh?re af If we consider
the line segment betweei andqa/f/, itis clear that this line segment will intersect with
a currently unknown hyperplane for regiofjj. This is because we know that such a
hyperplane exists, ag; is preferred at poinj(,/ff and it is not at poinp*. We know that
this hyperplane was previously unknown, because when werrdetedp*, we made
sure thatp*™ € P(,/fr. We can find the point of intersection with binary searchngsi
O(L) samples. The same argument holds true for the other two,azsieg the point
qa, instead ofqa}/.

Theorem 1. To find, w.h.p., all the hyperplanes that separate regions,r&juires
O(Fklogk + dk?L)) samples, wherd” = 1/¢, e is the smallest volume of regions
that we considet is the precision, an@& = |A¢|. Computationally, this requires the
solution ofO(k?) linear programs.

Proof. The first step in SU is to find one point in each region (with sidfit volume).
This can be handled by random sampling, as shown by Lemmadr. wé have gener-
ated one point in each region, sort the regions by their spmeding follower actions
{a}, a?...a’;/}, wherek’ < k.

Next, we iterate over all pairs of regions, that is, we iteraver all pairSa’f and

i€ {af,af af s wherea’; # a’f. We run BND POINT ona’; anda’y. If it returns
fa|lure we move on to the next palr of regions. IiN® POINT does find a point, we
run DETERMINE HYPERPLANE to find a new hyperplane, after which we update the
overestimates.

Since we know that thé-simplex of all leader strategies is composed of at nkost
convex regions, there are at mc@ separating hyperplanes (as each region can share
at most one hyperplane with each other region). It takek) samples per hyperplane
to find a single point on it with ND POINT, according to Lemma 2. It then takes an
additionalO(dL) samples to find linearly independent points, according to Lemma 3.
Thus, we requir€®(dL) samples per hyperplane, 6(k?dL) total samples to find all
of the hyperplanes. This is in addition to tli¥ F'k log k) samples necessary to find
points in the regions with sufficiently high volume, accoigito Lemma 1.

Computationally, we need to run at mc(ét) linear programs that find a valid start-

ing point to determine a hyperplane, since there are at @)Slyperplanes. In addition,

we need to run at mo@) linear programs that fail to find a feasible point, becauseon
we fail to find a feasible point we need never try that pair dibfeer actions again. This
gives us a bound aD(k?) on the number of linear programs.

B Multiple types/unknown payoffs

In this subsection, we extend the work of Section 3 to the Biayecase, where there
is a set® of opponent types|@| = 1), and the follower’s payoff function remains
unknown.

First, let us consider a simplified version of this problerhene a sample tells us
whateverytype would play for this mixed strategy, instead of what agkirtype would
play. We call such a powerful sampleeamplete sample

Lemma 4. The leader can find all the necessary hyperplanes usiti k F log(k) +
dk®L))) complete samples.

Proof. Number the typeg!, 82, ...,87. We simply run the SU algorithm times, first
for 9, etc. In each case, we ignore all the information except ffiertype we are
currently considering. In the end, we will know all the hyplanes for each type.
O(Fklog(k) + dk*L)) samples are sufficient to solve the problem with a single,type
which gives us the desired bound.

Now let us consider the original problem where in a singledatwe only obtain
a typed drawn according to the distribution, and the action playgthlat type. We can
use the algorithm from Lemma 4 by sampling the same pointcéerffily often, so that
we obtain a complete sample with all the types—in fact, we aeled the type that the
algorithm is currently considering.

Theorem 6. To find all of the hyperplanes requires
O(P(0")~'r(Fklog(k) + dk*L)log(r(Fklog(k) + dk*L)) samples for a constant

chance of success, whete= argminP(6)
6ce

Proof. First, letz = Fklog(k)+dk®L. Assume that we sample at each pgiRt¢’) 1)«
In(z7 + 1) times. Since we fail a sample with probability — P(¢’)), we can up-
per bound the chance of failing”(¢’)~!) * In(z7 + 1) consecutive times a1 —
W)P(e/)fl))m(”“) < (§)METHD = L. This gives a lower bound dft —
(27—1“)) chance of success at a single point. Then, our chance ofediogeat allz7

distinct points ag1 — -+7)*” > ¢. Thus we have a chance of success of greater than
1

Once we have all the hyperplanes, we have enough informtdiaolve for the
optimal strategy. To solve this exactly still requires usatve an NP-hard problem, for
example using the MIP from Appendix F.

C Known payoffs/unknown type distribution

In this subsection, we study a different version of the Selmdrg learning problem:
we assume that the leader knows the payoff matrix for evdigwer type, but does
not know the (fixed) distribution over types. In each rourd tkeader commits to a
mixed strategy; the follower type is drawn according to ttetribution over types; and
finally, the follower plays his best response to the mixeatsty given his type. Unlike
in Appendix B, the leader only learns the action that theofeér plays, not the type.
This will allow her to conclude that the follower’s type minstve been one of a subset
of the types, but in general she will not know the type exaticause multiple types
may be consistent with the follower’s action. If the leadsarhs the exact distribution
over follower types, then of course she can compute the apsirategy; however, she
may also be able to learn the optimal strategy without legytine exact distribution
over types. In fact, in some cases it is not possible to |darekact distribution—for
example, if there are two types for which the optimal respdosnyleader strategy is
column 1. The leader’s goal is to learn the optimal strategsifew rounds as possible.
We try to minimize the worst-case number of rounds required.

First, we assume that the distribution is degenerate: thewfer always has the
same typd, but the leader initially does not know which one. We obtaimfollowing
simple result:

Proposition 1 If the follower has a fixed typ#, then the leader can learn an optimal
Stackelberg strategy in rounds. Computationally, this requires only polynomiedéi

Proof. Let s be an optimal Stackelberg strategy for the leader if theVadir type is

6" (which can be computed in polynomial time using linear pamgming). Ifd,, ..., 0.

is an ordering of the types, then in roundet the leader commit te’:. In roundi, the
leader obtains some utilityy;’. Leti* € argmax;eqq,.. -1 U/ be a round in which the
leader obtained maximal utility. Then%* is an optimal Stackelberg strategy. This is
because in the roundsuch tha¥; = @ (the true follower type), the leader will obtain
the maximum possible utility.

We now move on to the case of an arbitrary (fixed) distributesr types. Any
given leader strategy will result in a distribution overléoVer actions: given leader
strategy, the probability that follower actioay is playedisP(ay|o) = > yco 6,0,a,
wherezy .., is 1 if a follower of type ¢ would respond tar with actionay, and0
otherwise. If the leader commits to the same mixed stratefpyr a sufficiently large
number of rounds, the leader will (approximately) le&a ¢|o) for all a . (In practice,
it may also be desirable not to have to switch strategies fiem 9 We assume that the
leader learns in this manner, that is, by using the same nsittategy for sufficiently
long to learn theP(ay|o) before switching to another mixed strategy. We call such a
period in which the leader only plays a single mixed strat@ggxtended sampl®©ur
objective is to minimize the number of extended samples e éal learn the optimal
strategy.

Theorem 7. If the follower types are drawn independently from a fixedrithistion,
the leader can learn enough about the distribution to detreman optimal Stackelberg
strategy usin@r extended samples. Computationally, this requires polyaldime.

Proof. Let Afc be the set of all follower actions that a follower of typwill play against
some leader strategy, that is,Aff ={ay € Ay : (30) BR(0,0) = as}. We can find
these sets as follows; € Af if there is a feasible solution to the following set of linear
inequalities (where(a;) is the probability that the leader puts ap):

(Va’) >, ola)up(b,a,a5) = 32, o(a)uys (8, ar, ay)
> g 0la) =1
(Vay) o(a;) >0

While these inequalities only guarantee that there is aelemnilxed strategy for which
ay is oneof the best responses, by the nondegeneracy and boundeduminiolume
assumptions, there is such a strategy for whiglis theuniquebest response.

In the learning process, we first determine, for each #peith |Af£| > 1, the
probability P(6) of that type. To do so, we find two leader strategiés, o2 such
that BR(0,0%') # BR(0,0%?), but for anyd’ # 6, BR(¢',0%') = BR(0',5%2).
Once we have found such a pair of leader strategies, we canded-sample both of
them; as we switch from one to the other, some probabilityswa8 shift from one
follower action to another, and the amount of mass must betlgx@(6). We find these
two points by finding one of the separating hyperplanegfadentifying two points
(leader mixed strategies) close to but on opposite siddsediyperplane, and checking
that they have the desired properties (if not, we can regdgatiraw a new pair of
points in a way that guarantees we will eventually succe®itipf this can be done in
polynomial time using linear programming, as we explaintnex

First, we need to find two actioméf, afc € Afc that correspond to bordering regions—
that is, for which there is a leader mixed strategy such ttfi@l@ver of typed is indif-
ferent between these two actions (and strictly prefers tteeatl other actions). We let
a} be an arbitrary member off. Then, for every:, € A} with oy # a}, we check if

it can take the role of?, by solving the following linear program:

maximize e
subject to

Zal U(CL[)U,f(H, ag, CL}) = Za; O'(Cll)Uf(@, ag, a/f)
(Valt ¢ {ab,a)}) Sa ol@)ur(@yanag) > S ola)us(Oar,af) + e

D o(w)=1

(avlal) ola;)) >0

If the optimal solution has a positive objective value, tit@orresponds to a mixed
strategyo such that the follower is indifferent betweeﬁa andaf[(= a’f), and strictly
prefers these two actions to all other actions. Now, we cahtfio pointss’ ando?,
each within distancé of o, such that the follower strictly prefers to play against?,

and strictly prefers to play} againstr?. We can then check whether these two points
satisfy the required conditions fef»! ando?2; if they do not, we can find points that

do by repeatedly shrinkingyand perturbingr on its hyperplane (which is guaranteed
to work due to the nondegeneracy/minimum volume assumgtion

Hence, we can find?(#) for every® with |Afc| > 1. After we have done so, for the
0 with |Afc| = 1 (the types that respond to every leader strategy with the santion),
we cannot learn their individual probabilities, as pointed before; however, all that
is needed to find an optimal leader strategy is, for eachraatipthe total probability
of the types that always play;. We can infer all these probabilities from any single
extended sample, as follows. We already k() for everyd with |A§c| > 1, and we
know which actions these types play at the extended samplevé&can subtract these
probabilities from the action probabilities in the exteddmmple, and the remaining
probabilities on actions are the probabilities that we want

For each type, we used at most 2 extended samples, resulti@igmost2r ex-
tended samples. Computationally, this approach requideig at mos2r|Ay| linear
programs.

This will discover almost the entire distribution, with oeeception: if there are two
(or more) types that always play the same action, then it goBsgible to distinguish
them and we can only learn their aggregate probability. Bynthndegeneracy assump-
tion, this can only happen if there is a fixed follower actibattis the best response for
those types againanyleader strategy—that is, there are no separating hyperpfan
those types. Of course, knowing the aggregate probabdlisufficient for computing
the optimal Stackelberg strategy for the leader, becauseitypes are indistinguish-
able then we may as well merge them into a single type. Of epwgen given the
distribution, it is NP-hard to compute the optimal mixedagtgy in this context. This
is not in contradiction with the above theorem, which onlysiders the computation
needed to learn enough about the distribution. To find thengptmixed strategy, an
NP-hard problem still needs to be solved, which can be dawegample, using the
MIP in Appendix F

D Omitted proofs from Section 4

Theorem 2. For all constante > 0, no polynomial-time factor!—¢ approximation
exists for BOFT unless N2 P, even if there are only two follower actions.

Proof. It is known that no polynomial-time factd#/|! < approximation exists for
MAX-INDEPENDENT-SET (given by a graptV, E)), unless NP = P [17]. We show
our result by reducing an arbitrary instar{¢é E) of this problem to a game as follows.
For everyv € V, there is a follower typ@”, and a leader actioa’. The prior over fol-
lower types is uniform. There are two follower actions,and B (for each follower
type). The leader gets utility 1 if the follower playls and O otherwise. The follower’s
utility is defined as follows.

— Forallv € V, ug(6,a7, A) = |V|.

— Forallv,w € V with v # w, us(6¥,a}", A) = 0.
— Forall(v,w) € E,us(6”,a}’,B) =1+ |V|?

— Forall(v,w) ¢ E,ur(6%,a}, B) = 1.

Suppose there is an independent$et sizek in (V, E). Consider a mixed strategy
that places probabilit)ig on eachs} with v € S. Then, for every typd” with v € S,
the follower will play A, because the follower will get > 1 for playing A, and 1 for
playing B (because na;’ with (v, w) € E is ever played, becauggis an independent
set).

Correspondingly, suppose there is a leader strategy thatiggpes to playA.
Let S be the set of vertices such that the follower plays! for 8V; we will show
it is an independent set. B plays A, thena} must get probability at least/n (to
make playingA optimal for the follower). But, no action}” with (v, w) € E can get
probability at Ieast%, because in that case the expected utility for the followeth(
type §”) of playing B is at least(1)(1 + n?) > n. So thek types must constitute an
independent set.

Hence, we have shown that the number of types plaxifgyhich is proportional to
the leader’s utility) for the optimal leader strategy is aljo the size of the maximum
independent set. Since the numbeaf types for the follower is equal td/|, this gives
us the desired result.

Theorem 3. There is a polynomial-time factar-approximation algorithm for BOFT.

Proof. Let o* be an optimal leader strategy, that is,

o* € argmaxy) e P(0) >, o(a)ui(ar, BR¢(0,0)). Consider the following sim-
ple randomized algorithm: choose a typeniformly at random and play a mixed leader
strategyo? that maximizes utility against that single type, that is,

0% € argmax, >0, ola)ui(ar, BRs(0,0)). (We can find such a mixed leader strat-
egy in polynomial time by the linear programming approacrf{2].) For everyd, we
have

D al o%(a))ui(a;, BRs(0,0%)) > > a, 0 (@)w(ar, BR¢(0,07)). The probability that

6 is chosen both by our algorithm and by nature as the type détlosver is (1/7) P (6).
Because utilities are bounded below by zero, the expectkty that we receive is at
leastd ,.o(1/7)P(0)>_,, o?(a))w(ar, BR¢(0,07%)) >

(1/7) 2 9o P(O) -, 0" (a)w(ar, BRs(0,0")). Hence, this randomized algorithm
results in a factor= approximation. (We emphasize that this algorithm randahbtoses
a mixed strategy to commit to, which is not the same as cormgiib the corresponding
mixture of those mixed strategies.)

Instead of randomizing uniformly over which of tla€ to commit to, we can in-
stead, for eacH, evaluate the total expected utility that results from catting to the
strategy (which is
Yoco P(0)) Y, 0’ (ar)ui(ar, BRy(0',07))), and choose one that maximizes this ex-
pected utility. This cannot lead to a lower expected utifity the leader; hence, this
gives us a deterministic algorithm with the same approxiongguarantee.

Theorem 4. WOFT is completely inapproximable in polynomial time, sal®=NP
(that is, it is hard to distinguish between instances whieed¢ader can get at leastin
the worst case, and instances where the leader can onl§)geeven if there are only
four follower actions.

Proof. We reduce an arbitrary instance of 3SAT to a game such thae#der can
obtain an expected utility of if the 3SAT instance is satisfiable, afidbtherwise. The

3SAT instance consists of variables,z+, ..., z,, andm clauses(C4,...,C,,. We
create one type for each variable and for each clause. Inaime gfor every variable
x;, we have two leader actions; “* anda; “*. The follower has four actions}, B, C,
andD. The leader gets utilitg if the follower playsA, and1 otherwise. There are two
kinds of follower type: one for each variablé*() and one for each clause<).

For atypg®: correspondingto a variable, we make it so that act@msdD are al-
ways suboptimal for the follower, so we only consideandB. We letu ¢ (67, aj"’”’?, A) =
up (0%, a;7 %, A) = n, andug (07, a; " A) = up(0%,a; 7, A) = 0fori # j. Also,
we letus (6%, a;, B) = 1for all a;. The following table gives the payoff matrix for type
f*1 as an example.

Al B
+x1(0,n1,1
—x1|0,n1,1
0,01,1
0,01,1

For a typef“i corresponding to a clause, for each litexah the clause (where the
set of all literals is{+x; : i € {1,...,n}}U{—=z; : i € {1,...,n}}), exactly one of
the three action8, C, D will give the follower utility n if the leader playssLlA (and each
of these three actions will correspond to one of the threedlis in the clause). Playing
A always gives the follower utilityl. Otherwise, the follower gets. For example, if

Cy = (+x1 V —z2 V +24), then the following table gives the payoff matrix for type
6¢1.

Al B| C| D
+1]0,1)1,n1,01,0
-21|0,1/1,0[1,0/1,0
+12-10,1{1,01,0[1,0

M.,: —22|0,111,01,n1,0
+3|0,1/1,011,01,0
—x3(0,1/1,0[1,0/1,0
+4|0,2/1,01,011,n
—14(0,1/1,0[1,0/1,0

We now show that the leader can obtain a utilityl @f this game against every type
if and only if the 3SAT instance has a satisfying assignmand (will get0 against at
least one type otherwise). Letbe the mixed strategy to which the leader commits.

For each variable;, if o(a; ") + o(a; “*) < 1, then a follower of type®: will
play B, otherwise it will playA. Hence, the leader will gétfor all types corresponding
to variables if and only if the above inequality holds for gveariablex;; otherwise,
the leader will obtair) against at least one type corresponding to a variable.

For each clausé€’;, if for at least one of the three literalsin the clause, we have
o(a}) > L, then a follower of typ@“ will play B, C, or D; otherwise, it will playA.

Hence, the leader will get for all types corresponding to clauses if and only if every
clause contains at least one literal for which the aboveuakiy holds; otherwise, the
leader will obtair) against at least one type corresponding to a clause.

Now, suppose that the 3SAT instance has a satisfying assiginmhen, consider
the mixed strategy that places probabilityn on every Iiteral that is set toue in the
satisfying assignment. For every variablg we haves(a; ") + o(a; *) < 1, so
the follower will play B for all the types corresponding to vanables For everyséau
for at least one of the three literalsin the clause, we have(a;') > 1 (because the
assignment satisfies the formula), so the follower will playC, or D for all the types
corresponding to clauses. Hence, the leader obtaingudtifitr every follower type.

Conversely, suppose that there exists a mixed strategytbatlhe leader obtains
positive utility for every follower type. For every variaht;, we must have(al““) +
o(a; ") < 1. Hence, at most one ef* anda; “* can receive probability at least
1/n. Now consider the following assignment‘aif”“ receives probability at least/n,
setz; to true; if a; ' receives probability at least/n, setz; to false otherwise, set;
arbitrarily. Because the leader receives utility at Iéamjainst every type corresponding
to a clause, for every clause, for at least one of the threlg\ in the clause, we must
haveo(a}') > % But that means that the clause either contains semewherez;
is set totrue, or some—x; wherez; is set tofalse It follows that our assignment is a
satisfying assignment.

Theorem 5. WORT is NP-hard.

Proof. We reduce an arbitrary instance of 3-COVER (where we arengiveet of el-
ementsS (|S| = n), a collection of subsetS; C S with |S;| = 3, and we are asked
whether all ofS can be covered with /3 of the S;) to a game with ranges where the
leader can obtain an expected utility of at Ieiam if and only if a 3-cover exists.

For eachS;, let there be both a row;* and a columm:3i. Also, let there be a
columnaj for eachs (these columns are really bad for the leader and must beedpid
Let the utilities be defined as follows:
ul(af ,af V=1

uy(a) ,a y=0fori #£j
(aziva}i) [0,1]

(af’,a?’)—Oforzaé]
uf(als"',a})—llfsgéSi
uf(als"',afc)——nifsési

If there exists a 3-cover (of size/3), then the leader can obtain guaranteed utility
3/n, as follows: randomize uniformly over the strategies cgponding to the 3-cover
(probability 3/n each). The follower will not be incentivized to play any, because
that gives him an expected utility of at mos8 + 1 = —2. The follower will not be
incentivized to play amf-f for which S; is not in the 3-cover. because it will give him
utility 0 (note that ties are broken in favor of the leader, as alway®.follower may
be incentivized to play an(y?f for which S; in the 3-cover; for each of these, the leader
will get 3/n in expectation.

Conversely, if the leader can get guaranteed utility, consider the set of all the
S; for which af”’ receives positive probability for the leader. The claimhiattthis must
be a 3-cover (of siz8/n). First, the follower cannot be incentivized to play arty.
Hence, for each, someals'i with s € S; must get positive probability for the leader.
Now suppose strictly more thaw/3 of the alSi get positive probability for the leader.
Then one of them must get probability less ttegm. The column player might be
incentivized to play the corresponding® (since that may be the only one that ever
gives the follower positive utility), in which case the rolaper's expectation is less
than3/n, contrary to assumption.

E Worst-case optimization for linked range types

We now define a generalization of WORT (from subsection 4t8¢ckwvwe can prove is
inapproximable unles® = N P. This generalization allows the follower’s payoffs to
be linked across entries. We refer to this problenwasst-case optimization for linked
range types (WOLRT pBpecifically, instead of having ranges for each followetryen
we now have a linear expression for each follower entry whigty involvesymbols
an example expression would Be;, + 4c, + 1. For each symbol, there is a range (for
exampleg; € [0, 1]—in fact, without loss of generality, we can assume evergesns
[0, 1]), and a symbol can occur in multiple entries.

For example, consider the following game with linked rangéth c¢;, c2 € [0, 1]:

L R
Ul0,1+ 1 1,0
D[1,0 [0,1+c1/2+ca/2

If the leader places less th&ri7 probability onU, then the follower is guaranteed to
play R; this results in a utility of at most/7 for the leader. If the leader places more
than3/5 probability onU, then the follower is guaranteed to play this results in a
utility of at most2/5 for the leader. If the leader places probability betw8¢n and
3/5 onU, then the follower may end up playing eitheror R; by placing probability
1/2 onU, the leader obtains an expected utilitylg®2, which is optimal.

We note that WOLRT generalizes WORT, because we can haveasasesymbol
for every entry.

Theorem 8. WOLRT is completely inapproximable in polynomial timeegalP=NP
(that is, it is hard to distinguish between instances whiheeléader can get at least
in the worst case, and instances where the leader can onlg)get

Proof. We reduce an arbitrary SET-COVER instance (where we arengiveetS, a
collection of subsets$; of S, and a numbek, and are asked whether all Sfcan be
covered with at most of the S;) to a WOLRT instance such that the leader can get
utility 1 in the worst case if there is a set cover of size at mtpand0 otherwise.

With everys € S, we associate a symbe) € [0, 1]. For everysS;, the leader has
an actionals'i, and the follower has an acticuf’i. Additionally, for everys € S, the
follower has an action}. We have:

If there is a covering of siz&, then the leader can uniformly randomize over the
alSi corresponding to that covering. Then, for astye S, if the follower plays one

of the a?’i where S; is in the covering and’ € S;, his expected utility is at least

(1/k) - k(X _gins, Cs) = cs; SO there is no reason for the follower to plm}?, and the
leader is guaranteed a ultility of

Conversely, suppose that there is a strategpat guarantees the leader positive
utility, that is, it guarantees that the follower will playe of thea;f’i. For anys’ € S,
consider the scenario whetg = 1 and the othet, are 0. The follower is incentivized
to play somezfi; it must be that’ € S;, and the follower’s expected payoff for playing
thisiso(a)) - k> ,..q ¢s) = o(a)*) - k, so it follows thato(a;*) > 1/k. There can
be at most subsetsS; for which this is true, and they must cover all thlec S, so it
follows there is a covering of size at mdst

F Mixed integer program formulations of BOFT and WOFT

First let us introduce a mixed integer program (which, inwaw, simplifies the known
mixed integer program [12] slightly, but the idea is simjildt uses auxiliary variables
q(0,a;,ar), which correspond to the probability that, a; are played, given that the
follower has type)—which will be equal to0 if af is not a best response fér and
equal too(a;) otherwise. It also uses binary indicator variabhé® ay) € {0,1} for
whether the best response for typis a .

maximize), P(6) Zahaf q(0, a1, af)w(ar, ar)
subject to
(V) Y, b(6,az) =1
(V0,a;,a5) q(0,a1,ar) < b(0,af)
(VG, al) Eaf q(ov ai, af) = U(al)
(V0,ap,af) >, a(0,ai,a5)(ug(0, ai,a5) —up(0,ai,a%)) =0
Y ola) =1
(Vay) o(a;) >0

The following is a mixed integer program (MIP) formulatioor WOFT. In this
MIP, we assume that all payoffs are normalized to lig0inl]. Again, we use a binary
variableb(#,ay) € {0,1} that indicates whethet; is the best response fér We
also use variableE, (the leader’s worst-case utility}];(6) (the leader’s utility if the
type isd), Ur(0, as) (the follower’s utility for playingay givené), Us(60,ay) (equal to
Us(0,ay) if ay is the best response fr 0 otherwise) U, () (the follower’s utility if
the type is9).

maximize U

subject to

(¥0) ¥, b0.ap) =1

(VO,ap) Us(0,ar) = >, o(a)ur(0,ar,ar)

(Vo af) U}(G,af) < Uy G,af

(V0,ay) U}(G,af) < b(0,af)

(V0) Us(0) = 2_,, Us(0,a)

(V0,ap) Us(0) > Uy (0,ay)

(V0, af) U (0) < Eal o(a))u(ay, af) + (1 —0(6, af))

(V) U < Ui(0)

Dq, 0la) =1
(Va;) o(a;) >0

