
Simple Search Methods For

Finding A Nash Equilibrium

Ryan Porter, Eugene Nudelman, and Yoav Shoham 1

Computer Science Department

Stanford University

Stanford, CA 94305

{rwporter,eugnud,shoham}@cs.stanford.edu

Abstract

We present two simple search methods for computing a sample Nash equilibrium

in a normal-form game: one for 2-player games and one for n-player games. Both

algorithms bias the search towards supports that are small and balanced, and employ

a backtracking procedure to efficiently explore these supports. Making use of a new

comprehensive testbed, we test these algorithms on many classes of games, and show

that they perform well against the state of the art – the Lemke-Howson algorithm

for 2-player games, and Simplicial Subdivision and Govindan-Wilson for n-player

games.

Key words: Nash equilibrium, Computer Science, Algorithms

1 We would like to thank the members of Stanford multiagent research group, Bob

Wilson, and Christian Shelton for many useful comments and discussions. We also

thank anonymous reviewers for thoughtful comments. This work was supported

in part by DARPA grant F30602-00-2-0598 and in part by the National Science

Preprint submitted to Elsevier Science 7 March 2005

1 Introduction

This paper addresses the problem of finding a sample Nash equilibrium of

a given normal form game. This notorious problem has been described as

the “most fundamental computational problem” at the interface of computer

science and game theory (Papadimitriou, 2001). Despite several decades of re-

search into this problem it remains thorny; its precise computational complex-

ity is unknown, and new algorithms have been relatively few and far between.

The present paper makes two related contributions to the problem, both bring-

ing to bear fundamental lessons from computer science. In a nutshell, they are

these:

• The use of heuristic search techniques in algorithms.

• The use of an extensive test suite to evaluate algorithms.

The surprising result of applying these insights is that, for relevant classes of

games, even very simple heuristic methods are quite effective, and significantly

outperform the relatively sophisticated algorithms developed in the past. We

expand on these two points below.

In the developments of novel algorithms, one can identify two extremes. The

first extreme is to gain deep insight into the structure of the problem, and

craft highly specialized algorithms based on this insight. The other extreme is

to identify relatively shallow heuristics, and hope that these, coupled with the

ever increasing computing power, are sufficient. While the first extreme is cer-

tainly more appealing, the latter often holds the upper hand in practice. 2 For

Foundation under ITR IIS-0205633.
2 Of course, there is no difference in kind between the two extremes. To be effective,

2

example, a deep understanding of linear programming yielded polynomial-time

interior point methods (Karmarkar, 1984), though in practice one tends to use

methods based on the exponential Simplex algorithm (Wood and Dantzig,

1949). In reality, neither extreme is common. It is more usual to find a base-

line algorithm that contains many choice points based on some amount of

insight into the problem, and then apply heuristics to making these choices.

For example, for the problem of propositional satisfiability, the current state of

the art solvers apply heuristics to search the space spanned by the underlying

Davis-Putnam procedure (Cook and Mitchell, 1997).

The use of heuristics, while essential, raises the question of algorithm evalua-

tion. The gold standard for algorithms is trifold: soundness, completeness, and

low computational complexity. An algorithm is sound if any proposed solution

that it returns is in fact a solution, and it is complete if, whenever at least

one solution exists, the algorithm finds one. Low computational complexity is

generally taken to mean that the worst-case running time is polynomial in the

size of the input. 3

heuristics too must embody some insight into the problem. However, this insight

tends to be limited and local, yielding a rule of thumb that aids in guiding the

search through the space of possible solutions or algorithms, but does not directly

yield a solution.
3 In rare cases this is not sufficient. For example, in the case of linear programming,

Khachiyan’s ellipsoid method (Khachiyan, 1979) was the first polynomial-time al-

gorithm, but, in practice, it could not compete with either the existing, exponential

simplex method (Wood and Dantzig, 1949), or polynomial interior point methods

(Karmarkar, 1984) that would later be developed. However, this will not concern us

here, since there is no known polynomial-time complexity algorithm for the prob-

lem in question – computing a sample Nash equilibrium – and there are strong

3

Of course, in many cases, it is not possible (or has turned out to be extremely

difficult) to achieve all three simultaneously. This is particularly true when one

uses heuristic methods. In this paper we focus on approaches that sacrifice the

third goal, that of low worst-case complexity. Without a worst-case guarantee

(and even worse, when one knows that the running time is exponential in

the worst case), an algorithm must be evaluated using empirical tests, in

which case the choice of problem distributions on which it is tested becomes

critical. This is another important lesson from computer science – one should

spend considerable effort devising an appropriate test suite, one that faithfully

mirrors the domain in which the algorithms will be applied.

With these computer science lessons in mind, let us consider the extant game

theoretic literature on computing a sample Nash equilibrium. Algorithm de-

velopment has clearly been of the first kind, namely exploiting insights into the

structure of the problem. For 2-player games, the problem can be formulated

as a linear complementarity problem (LCP). The Lemke-Howson algorithm

(Lemke and Howson, 1964) is based on a general method for solving LCPs.

Despite its age, this algorithm has remained the state of the art for 2-player

games. For n-player games, the best existing algorithms are Simplicial Subdi-

vision (van der Laan et al., 1987) and Govindan-Wilson, which was introduced

by Govindan and Wilson (2003) and extended and efficiently implemented by

Blum et al. (2003). Each of these algorithms is based on non-trivial insights

into the mathematical structure of the problem.

From the evaluation point of view, these algorithms are all sound and com-

plete, but not of low complexity. Specifically, they all have a provably expo-

suspicions that one does not exist.

4

nential worst-case running time. The existing literature does not provide a

useful measure of their empirical performance, because most tests are only

on so-called “random” games, in which every payoff is drawn independently

from a uniform distribution. This is despite the fact that this distribution is

widely recognized to have rather specific properties that are not representative

of problem domains of interest.

In this paper we diverge from the traditional game-theoretic approach in two

fundamental ways: (1) we propose new algorithms that are based on (rela-

tively) shallow heuristics, and (2) we test our algorithms, along with existing

ones, extensively through the use of a new computational testbed. The re-

sult is a pair of algorithms (one for 2-player games, and another for n-player

games, for n > 2) that we show to perform very well in practice. Specifically,

they outperform previous algorithms, Lemke-Howson on 2-player games, and

Simplicial Subdivision and Govindan-Wilson on n-player games, sometimes

dramatically.

The basic idea behind our two search algorithms is simple. Recall that, while

the general problem of computing a Nash equilibrium (NE) is a complementar-

ity problem, computing whether there exists a NE with a particular support 4

for each player is a relatively easy feasibility program. Our algorithms explore

the space of support profiles using a backtracking procedure to instantiate the

support for each player separately. After each instantiation, they prune the

search space by checking for actions in a support that are strictly dominated,

given that the other agents will only play actions in their own supports.

Both of the algorithms are biased towards simple solutions through their pref-

4 The support specifies the pure strategies played with nonzero probability.

5

erence for small supports. Since it turns out that games drawn from classes

that researchers have focused on in the past tend to have (at least one) “sim-

ple” NE, our algorithms are often able to find one quickly. Thus, this paper is

as much about the properties of NE in games of interest as it is about novel

algorithmic insights.

We emphasize, however, that we are not cheating in the selection of games

on which we test. While we too conduct tests on “random” games (indeed,

we will have more to say about how “random” games vary along at least one

important dimension), we also test on many other distributions (24 in total).

To this end we use GAMUT, a recently introduced computational testbed for

game theory (Nudelman et al., 2004). Our results are quite robust across all

games tested.

The rest of the paper is organized as follows. After formulating the problem

and the basis for searching over supports, we describe existing algorithms for

the problem of finding a sample NE. We then define our two algorithms. The

n-player algorithm is essentially a generalization of the 2-player algorithm, but

we describe them separately, both because they differ slightly in the ordering

of the search, and because the 2-player case admits a simpler description of the

algorithm. Then, we describe our experimental setup, and separately present

our results for 2-player and n-player games. We then briefly describe the nature

of the equilibria that are found by different algorithms on our data. In the final

section, we conclude and describe opportunities for future work.

6

2 Notation

We consider finite, n-player, normal-form games G = 〈N, (Ai), (ui)〉:

• N = {1, . . . , n} is the set of players.

• Ai = {ai1, . . . , aimi
} is the set of actions available to player i, where mi is

the number of available actions for that player. We will use ai as a variable

that takes on the value of a particular action aij of player i, and a =

(a1, . . . , an) to denote a profile of actions, one for each player. Also, let a−i =

(a1, . . . , ai−1, ai+1, . . . , an) denote this same profile excluding the action of

player i, so that (ai, a−i) forms a complete profile of actions. We will use

similar notation for any profile that contains an element for each player.

• ui : A1 × . . . × An → ℜ is the utility function for each player i. It maps a

profile of actions to a value.

Each player i selects a mixed strategy from the set of available strategies:

Pi = {pi : Ai → [0, 1]|
∑

ai∈Ai
pi(ai) = 1}. A mixed strategy for a player

specifies the probability distribution used to select the action that the player

will play in the game. We will sometimes use ai to denote the pure strategy in

which pi(ai) = 1. The support of a mixed strategy pi is the set of all actions

ai ∈ Ai such that pi(ai) > 0. We will use x = (x1, . . . , xn) to denote a profile

of values that specifies the size of the support of each player.

Because agents use mixed strategies, ui is extended to also denote the ex-

pected utility for player i for a strategy profile p = (p1, . . . , pn): ui(p) =

∑
a∈A p(a)ui(a), where p(a) = Πi∈Npi(ai).

7

The primary solution concept for a normal form game is that of Nash equilib-

rium. A mixed strategy profile is a Nash equilibrium if no agent has incentive

to unilaterally deviate.

Definition 1 A strategy profile p∗ ∈ P is a Nash equilibrium (NE) if: ∀i ∈

N, ai ∈ Ai : ui(ai, p
∗
−i) ≤ ui(p

∗
i , p

∗
−i)

3 Existing Algorithms

Despite the fact that Nash equilibrium is arguably the most important concept

in game theory, remarkably little is known about the problem of computing a

sample NE in a normal-form game. We know that every finite, normal form

game is guaranteed to have at least one NE (Nash, 1950). Beyond that, all ev-

idence points to this being a hard problem (Gilboa and Zemel, 1989; Conitzer

and Sandholm, 2003), but it does not fall into a standard complexity class (Pa-

padimitriou, 2001), because it cannot be cast as a decision problem. Instead,

Megiddo and Papadimitriou (1991) developed a new (but rather limited) com-

plexity class, TFNP, to encompass such problems.

In this section, we provide a brief overview of the relevant algorithms. In

addition to specific references given for each algorithm, further explanation

can be found in two thorough surveys on NE computation – von Stengel

(2002); McKelvey and McLennan (1996).

The most commonly-used algorithm for finding a NE in a two-player game

is the Lemke-Howson algorithm (Lemke and Howson, 1964), which is a spe-

cial case of Lemke’s method (Lemke, 1965) for solving linear complementarity

problems. The Lemke-Howson algorithm is a complementary pivoting algo-

8

rithm, where an arbitrary selection of an action for the first player determines

the first pivot, after which every successive pivot is determined uniquely by the

current state of the algorithm, until an equilibrium is found. Thus, each action

for the first player can be thought of as defining a path from the starting point

(the extraneous solution of all players assigning probability zero to all actions)

to a NE. In the implementation of Lemke-Howson in Gambit (McKelvey et al.,

2004), the first action of the first player is selected.

For n-player games, until recently, Simplicial Subdivision (van der Laan et al.,

1987), and its variants, were the state of the art. This approach approximates

a fixed point of a function (e.g., the best-response correspondence) which

is defined on a simplotope (a product of simplices). The approximation is

achieved by triangulating the simplotope with a mesh of a given granularity,

and traversing the triangulation along a fixed path. The worst-case running

time of this procedure is exponential in dimension and accuracy (McKelvey

and McLennan, 1996).

More recently, Govindan and Wilson (2003) introduced a continuation method

for a NE in an n-player game. Govindan-Wilson works by first perturbing a

game to one that has a known equilibrium, and then by tracing the solution

back to the original game as the magnitude of the perturbation approaches

zero. The structure theorem of Kohlberg and Mertens (1986) guarantees that it

is possible to trace both the game and a solution simultaneously. This method

has been efficiently implemented by Blum et al. (2003), who also extended

it to solve graphical games and Multi-Agent Influence Diagrams (Koller and

Milch, 2001).

Our algorithm in spirit is closest to the procedure described by Dickhaut

9

and Kaplan (1991) for finding all NE. Their program enumerates all possible

pairs of supports for a two-player game. For each pair of supports, it solves a

feasibility program (similar to the one we will describe below) to check whether

there exists a NE consistent with this pair. A similar enumeration method was

suggested earlier by Mangasarian (1964), based on enumerating vertices of a

polytope.

Clearly, either of these two enumeration methods could be converted into an

algorithm for finding a sample NE by simply stopping after finding the first

NE. However, because the purpose of these algorithms is to instead find all

NE, no heuristics are employed to speed the computation of the first NE.

4 Searching Over Supports

The basis of our two algorithms is to search over the space of possible in-

stantiations of the support Si ⊆ Ai for each player i. Given a support profile

S = (S1, . . . , Sn) as input, Feasibility Program 1, below, gives the formal

description of a program for finding a NE p consistent with S (if such an

strategy profile exists). In this program, vi corresponds to the expected utility

of player i in an equilibrium. The first two classes of constraints require that

each player must be indifferent between all actions within his support, and

must not strictly prefer an action outside of his support. These imply that no

player can deviate to a pure strategy that improves his expected utility, which

is exactly the condition for the strategy profile to be a NE.

Because p(a−i) =
∏

j 6=i pj(aj), this program is linear for n = 2 and nonlinear for

all n > 2. Note that, strictly speaking, we do not require that each action ai ∈

10

Si be in the support, because it is allowed to be played with zero probability.

However, player i must still be indifferent between action ai and each other

action a′
i ∈ Si; thus, simply plugging in Si = Ai would not necessarily yield a

Nash equilibrium as a solution.

Feasibility Program 1

Input : S = (S1, . . . , Sn), a support profile

Output : NE p, if there exists both a strategy profile p = (p1, . . . , pn) and

a value profile v = (v1, . . . , vn) such that:

∀i ∈ N, ai ∈ Si :
∑

a−i∈S−i

p(a−i)ui(ai, a−i) = vi

∀i ∈ N, ai ∈/ Si :
∑

a−i∈S−i

p(a−i)ui(ai, a−i) ≤ vi

∀i ∈ N :
∑

ai∈Si

pi(ai) = 1

∀i ∈ N, ai ∈ Si : pi(ai) ≥ 0

∀i ∈ N, ai ∈/ Si : pi(ai) = 0

5 Algorithm for Two-Player Games

In this section we describe Algorithm 1, our 2-player algorithm for searching

the space of supports. There are three keys to the efficiency of this algorithm.

The first two are the factors used to order the search space. Specifically, Algo-

rithm 1 considers every possible support size profile separately, favoring sup-

port sizes that are balanced and small. The motivation behind these choices

comes from work such as (McLennan and Berg, 2002), which analyzes the the-

oretical properties of the NE of games drawn from a particular distribution.

Specifically, for n-player games, the payoffs for an action profile are deter-

11

mined by drawing a point uniformly at random in a unit sphere. Under this

distribution, for n = 2, the probability that there exists a NE consistent with

a particular support profile varies inversely with the size of the supports, and

is zero for unbalanced support profiles.

The third key to Algorithm 1 is that it separately instantiates each players’

support, making use of what we will call “conditional (strict) dominance” to

prune the search space.

Definition 2 An action ai ∈ Ai is conditionally dominated, given a profile of

sets of available actions R−i ⊆ A−i for the remaining agents, if the following

condition holds: ∃a′
i ∈ Ai ∀a−i ∈ R−i : ui(ai, a−i) < ui(a

′
i, a−i)

Observe, that this definition is strict, because, in a Nash Equilibrium, no action

that is played with positive probability can be conditionally dominated given

the actions in the support of the opponents’ strategies.

The preference for small support sizes amplifies the advantages of checking for

conditional dominance. For example, after instantiating a support of size two

for the first player, it will often be the case that many of the second player’s

actions are pruned, because only two inequalities must hold for one action to

conditionally dominate another.

Pseudo-code for Algorithm 1 is given below. Note that this algorithm is com-

plete, because it considers all support size profiles, and because it only prunes

actions that are strictly dominated.

12

Algorithm 1

for all support size profiles x = (x1, x2), sorted in increasing order of, first,

|x1 − x2| and, second, (x1 + x2) do

for all S1 ⊆ A1 s.t. |S1| = x1 do

A′
2 ← {a2 ∈ A2 not conditionally dominated, given S1 }

if ∄a1 ∈ S1 conditionally dominated, given A′
2 then

for all S2 ⊆ A′
2 s.t. |S2| = x2 do

if ∄a1 ∈ S1 conditionally dominated, given S2 then

if Feasibility Program 1 is satisfiable for S = (S1, S2) then

Return the found NE p

6 Algorithm for N-Player Games

Algorithm 1 can be interpreted as using the general backtracking algorithm to

solve a constraint satisfaction problem (CSP) for each support size profile (for

an introduction to CSPs, see, for example, Dechter (2003)). The variables in

each CSP are the supports Si, and the domain of each Si is the set of supports

of size xi. While the single constraint is that there must exist a solution to

Feasibility Program 1, an extraneous, but easier to check, set of constraints

is that no agent plays a conditionally dominated action. The removal of con-

ditionally dominated strategies by Algorithm 1 is similar to using the AC-1

algorithm to enforce arc-consistency with respect to these constraints. We use

this interpretation to generalize Algorithm 1 for the n-player case. Pseudo-code

for Algorithm 2 and its two procedures, Recursive-Backtracking and Iterated

Removal of Strictly Dominated Strategies (IRSDS) are given below. 5

5 Even though our implementation of the backtracking procedure is iterative, for

simplicity we present it here in its equivalent, recursive form. Also, the reader fa-

miliar with CSPs will recognize that we have employed very basic algorithms for

13

IRSDS takes as input a domain for each player’s support. For each agent whose

support has been instantiated, the domain contains only that instantiated

support, while for each other agent i it contains all supports of size xi that were

not eliminated in a previous call to this procedure. On each pass of the repeat-

until loop, every action found in at least one support in a player’s domain

is checked for conditional domination. If a domain becomes empty after the

removal of a conditionally dominated action, then the current instantiations

of the Recursive-Backtracking are inconsistent, and IRSDS returns failure.

Because the removal of an action can lead to further domain reductions for

other agents, IRSDS repeats until it either returns failure or iterates through

all actions of all players without finding a dominated action.

Algorithm 2

for all x = (x1, . . . , xn), sorted in increasing order of, first,
∑

i xi and, second,

maxi,j(xi − xj) do

∀i : Si ← NULL //uninstantiated supports

∀i : Di ← {Si ⊆ Ai : |Si| = xi} //domain of supports

if Recursive-Backtracking(S, D, 1) returns a NE p then

Return p

Finally, we note that Algorithm 2 is not a strict generalization of Algorithm 1,

because it orders the support size profiles first by size, and then by a measure

of balance. The reason for the change is that balance (while still significant)

is less important for n > 2 than it is for n = 2. For example, under the model

of McLennan and Berg (2002), for n > 2, the probability of the existence of

a NE consistent with a particular support profile is no longer zero when the

backtracking and for enforcing arc consistency, and we return to this point in the

conclusion.

14

Procedure 1 Recursive-Backtracking

Input : S = (S1, . . . , Sn): a profile of supports

D = (D1, . . . , Dn): a profile of domains

i: index of next support to instantiate

Output : A Nash equilibrium p, or failure

if i = n + 1 then

if Feasibility Program 1 is satisfiable for S then

Return the found NE p

else

Return failure

else

for all di ∈ Di do

Si ← di

Di ← Di − {di}

if IRSDS(({S1}, . . . , {Si}, Di+1, . . . , Dn)) succeeds then

if Recursive-Backtracking(S,D, i + 1) returns NE p then

Return p

Return failure

support profile is unbalanced. 6

6 While this change of ordering does provide substantial improvements, the al-

gorithm could certainly still be improved by adding more complex heuristics. For

example, McKelvey and McLennan (1997) shows that, in a generic game, there can-

not be a totally mixed NE if the size of one player’s support exceeds the sum of the

sizes of all other players’ supports. However, we believe that handling cases such

as this one would provide a relatively minor performance improvement, since our

algorithm often finds a NE with small support.

15

Procedure 2 Iterated Removal of Strictly Dominated Strategies (IRSDS)

Input : D = (D1, . . . , Dn): profile of domains

Output : Updated domains, or failure

repeat

changed← false

for all i ∈ N do

for all ai ∈
⋃

di∈Di

di do

for all a′
i ∈ Ai do

if ai is conditionally dominated by a′
i, given

⋃
d−i∈D−i

d−i then

Di ← Di − {di ∈ Di : ai ∈ di}

changed← true

if Di = ∅ then

Return failure

until changed = false

Return D

7 Experimental Results

To evaluate the performance of our algorithms we ran several sets of exper-

iments. All games were generated by GAMUT (Nudelman et al., 2004), a

test-suite that is capable of generating games from a wide variety of classes

of games found in the literature. Table 1 provides a brief description of the

subset of distributions on which we tested.

A distribution of particular importance is the one most commonly tested on in

previous work: D18, the “Uniformly Random Game”, in which every payoff in

the game is drawn independently from an identical uniform distribution. Also

important are distributions D5, D6, and D7, which fall under a “Covariance

16

D1 Bertrand Oligopoly D2 Bidirectional LEG, Complete Graph

D3 Bidirectional LEG, Random Graph D4 Bidirectional LEG, Star Graph

D5 Covariance Game: ρ = 0.9 D6 Cov. Game: ρ ∈ [−1/(N − 1), 1]

D7 Covariance Game: ρ = 0 D8 Dispersion Game

D9 Graphical Game, Random Graph D10 Graphical Game, Road Graph

D11 Graphical Game, Star Graph D12 Graphical Game, Small-World

D13 Minimum Effort Game D14 Polymatrix Game, Complete Graph

D15 Polymatrix Game, Random Graph D16 Polymatrix Game, Road Graph

D17 PolymatrixGame, Small-World D18 Uniformly Random Game

D19 Travelers Dilemma D20 Uniform LEG, Complete Graph

D21 Uniform LEG, Random Graph D22 Uniform LEG, Star Graph

D23 Location Game D24 War Of Attrition

Table 1

Descriptions of GAMUT distributions.

Game” model studied by Rinott and Scarsini (2000), in which the payoffs

for the n agents for each action profile are drawn from a multivariate normal

distribution in which the covariance ρ between the payoffs of each pair of

agents is identical. When ρ = 1, the game is common-payoff, while ρ = −1

N−1

yields minimal correlation, which occurs in zero-sum games. Thus, by altering

ρ, we can smoothly transition between these two extreme classes of games.

It is worth noting that, while the different distributions in GAMUT vary

in their structure, some randomness must be injected into the generator in

order to create a distribution over games of that structure. Our results then

show that games drawn from these distributions are similar to that of the

“Uniformly Random Game” in that they are likely to have a pure strategy

NE, despite the imposed structure. Thus, the success of our algorithms is a

reflection on the structure of games of interest to researchers as much as it is

a demonstration of the techniques we employ.

Our experiments were executed on a cluster of 12 dual-processor, 2.4GHz

17

Pentium machines, running Linux 2.4.20. We capped runs for all algorithms at

1800 seconds. When describing the statistics used to evaluate the algorithms,

we will use “unconditional” to refer to the value of the statistic when timeouts

are counted as 1800 seconds, and “conditional” to refer to its value excluding

timeouts.

When n = 2, we solved Feasibility Program 1 using CPLEX 8.0’s callable

library (ILOG, 2004) 7 . For n > 2, because the program is nonlinear, we in-

stead solved each instance of the program by executing AMPL, using MINOS

(Murtagh and Saunders, 2004) as the underlying optimization package. Obvi-

ously, we could substitute in any nonlinear solver; and, since a large fraction

of our running time is spent on AMPL and MINOS, doing so would greatly

affect the overall running time.

Before presenting the empirical results, we note that a comparison of the

worst-case running times of our two algorithms and the three we tested against

does not distinguish between them, since they all have exponential worst-case

complexity.

7.1 Results for Two-Player Games

In the first set of experiments, we compared the performance of Algorithm 1 to

that of Lemke-Howson (implemented in Gambit, which added the preprocess-

7 We note that Lemke-Howson uses a mathematical software that is less efficient

than CPLEX, which undoubtedly has an effect on the running time comparisons

between the two algorithms. However, the difference is not nearly great enough to

explain the observed gap between the algorithms.

18

0.01

0.1

1

10

100

1000

10000

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
13

D
14

D
15

D
16

D
17

D
18

D
19

D
20

D
21

D
22

D
23

D
24

Distribution

Tim
e(s

)

Alg1
LH

Fig. 1. Unconditional median running times for Algorithm 1 and Lemke-Howson on

2-player, 300-action games.

ing step of iterated removal of weakly dominated strategies) on 2-player, 300-

action games drawn from 24 of GAMUT’s 2-player distributions. All algo-

rithms were executed on 100 games drawn from each distribution. The time

is measured in seconds and plotted on a logarithmic scale.

Figure 1 compares the unconditional median running times of the algorithms,

and shows that Algorithm 1 outperforms Lemke-Howson on all distributions. 8

However, this does not tell the whole story. For many distributions, it simply

reflects the fact that there is a greater than 50% chance that the distribution

will generate a game with a pure strategy NE, which Algorithm 1 will then

find quickly. Two other important statistics are the percentage of instances

solved (Figure 2), and the average running time conditional on solving the in-

stance (Figure 3). Here, we see that Algorithm 1 completes far more instances

than Lemke-Howson on several distributions, and solves fewer on just a single

distribution (6 fewer, on D23).

8 Obviously, the lines connecting data points across distributions for a particular

algorithm are meaningless– they were only added to make the graph easier to read.

19

0
10
20
30
40
50
60
70
80
90

100

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
13

D
14

D
15

D
16

D
17

D
18

D
19

D
20

D
21

D
22

D
23

D
24

Distribution

%
 S
olv
ed

Alg1
LH

Fig. 2. Percentage solved by Algorithm 1 and Lemke-Howson on 2-player, 300-action

games.

0.01

0.1

1

10

100

1000

10000

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
13

D
14

D
15

D
16

D
17

D
18

D
19

D
20

D
21

D
22

D
23

D
24

Distribution

Tim
e(s

)

Alg1
LH

Fig. 3. Average running time on solved instances for Algorithm 1 and Lemke-Howson

on 2-player, 300-action games.

Figure 3 further highlights the differences between the two algorithms. It

demonstrates that even on distributions for which Algorithm 1 solves far more

games, its conditional average running time is 1 to 2 orders of magnitude

smaller than Lemke-Howson.

Clearly, the hardest distribution for both of the algorithms is D6, which con-

20

0.01

0.1

1

10

100

1000

10000

-1 -0.5 0 0.5 1Covariance

Tim
e(s

)

Alg1
LH

Fig. 4. Running time for Algorithm 1 and Lemke-Howson on 2-player, 300-action

“Covariance Games”.

sists of “Covariance Games” in which the covariance ρ is drawn uniformly at

random from the range [−1, 1]. In fact, neither of the algorithms solved any

of the games in another “Covariance Game” distribution in which ρ = −0.9,

and these results were omitted from the graphs, because the conditional av-

erage is undefined for these results. On the other hand, for the distribution

“CovarianceGame-Pos” (D5), in which ρ = 0.9, all algorithms perform well.

To further investigate this continuum, we sampled 300 values for ρ in the range

[−1, 1], with heavier sampling in the transition region and at zero. For each

such game, we plotted a point for the running time of Algorithm 1, Lemke-

Howson in Figure 4. 9

The theoretical results of Rinott and Scarsini (2000) suggest that the games

with lower covariance should be more difficult for Algorithm 1, because they

are less likely to have a pure strategy NE. Nevertheless, it is interesting to

9 The capped instances for Algorithm 1 were perturbed slightly upward on the

graph for clarity.

21

0.01

0.1

1

10

100

1000

10000

100 200 300 400 500 600 700 800 900 1000
Actions

Tim
e(s

)
Alg1
LH

Fig. 5. Unconditional average running time for Algorithm 1 and Lemke-Howson on

2-player “Uniformly Random Games”, as the number of actions is scaled.

note the sharpness of the transition that occurs in the [−0.3, 0] interval. More

surprisingly, a similarly sharp transition also occurs for Lemke-Howson, de-

spite the fact that it operates in an unrelated way to Algorithm 1. It is also

important to note that the transition region for Lemke-Howson is shifted to

the right by approximately 0.3 relative to that of Algorithm 1, and that on

instances in the easy region for both algorithms, Algorithm 1 is still an order

of magnitude faster.

Finally, we explored the scaling behavior of all algorithms by generating 20

games from the “Uniformly Random Game” distribution (D18) for each mul-

tiple of 100 from 100 to 1000 actions. Figure 5 presents the unconditional

average running time, with a timeout counted as 1800s. While Lemke-Howson

failed to solve any game with more than 600 actions and timed out on some

100-action games, Algorithm 1 solved all instances, and, without the help of

cutoff times, still had an advantage of 2 orders of magnitude at 1000 actions.

22

7.2 Results for N-Player Games

In the next set of experiments we compare Algorithm 2 to Govindan-Wilson

and Simplicial Subdivision (which was implemented in Gambit, and thus com-

bined with iterated removal of weakly dominated strategies). First, to compare

performance on a fixed problem size we tested on 6-player, 5-action games

drawn from 22 of GAMUT’s n-player distributions. 10 While the numbers of

players and actions appear small, note that these games have 15625 outcomes

and 93750 payoffs. Once again, Figures 6, 7, and 8 show unconditional median

running time, percentage of instances solved, and conditional average running

time, respectively. Algorithm 2 has a very low unconditional median running

time, for the same reason that Algorithm 1 did for two-player games, and

outperforms both other algorithms on all distributions. While this dominance

does not extend to the other two metrics, the comparison still favors Algorithm

2.

We again investigate the relationship between ρ and the hardness of games

under the “Covariance Game” model. For general n-player games, minimal

correlation under this model occurs when ρ = − 1

n−1
. Thus, we can only study

the range [−0.2, 1] for 6-player games. Figure 9 shows the results for 6-player 5-

action games. Algorithm 2, over the range [−0.1, 0], experiences a transition in

hardness that is even sharper than that of Algorithm 1. Simplicial Subdivision

also undergoes a transition, which is not as sharp, that begins at a much larger

value of ρ (around 0.4). However, the running time of Govindan-Wilson is only

slightly affected by the covariance, as it neither suffers as much for small values

10 Two distributions from the tests of 2-player games are missing here, due to the

fact that they do not naturally generalize to more than 2 players.

23

0.001

0.01

0.1

1

10

100

1000

10000

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

D
16

D
17

D
18

D
19

D
20

D
21

D
22

Distribution

Tim
e(s

)

Alg2
SD
GW

Fig. 6. Unconditional median running times for Algorithm 2, Simplicial Subdivision,

and Govindan-Wilson on 6-player, 5-action games.

0
10
20
30
40
50
60
70
80
90

100

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

D
16

D
17

D
18

D
19

D
20

D
21

D
22

Distribution

%
 S
olv
ed

Alg2
SD
GW

Fig. 7. Percentage solved by for Algorithm 2, Simplicial Subdivision, and Govin-

dan-Wilson on 6-player, 5-action games.

of ρ nor benefits as much from large values.

Finally, Figures 10 and 11 compare the scaling behavior (in terms of uncon-

ditional average running times) of the three algorithms: the former holds the

number of players constant at 6 and varies the number of actions from 3 to

8, while the latter holds the number of actions constant at 5, and varies the

24

0.001

0.01

0.1

1

10

100

1000

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

D
16

D
17

D
18

D
19

D
20

D
21

D
22

Distribution

Tim
e(s

)

Alg2
SD
GW

Fig. 8. Average running time on solved instances for Algorithm 2, Simplicial Sub-

division, and Govindan-Wilson on 6-player, 5-action games.

0.01

0.1

1

10

100

1000

10000

-0.2 0 0.2 0.4 0.6 0.8 1
Covariance

Tim
e(s

)

Alg2
SD
GW

Fig. 9. Running time for Algorithm 2, Simplicial Subdivision, and Govindan-Wilson

on 6-player, 5-action “Covariance Games”.

number of players from 3 to 8. In both experiments, both Simplicial Subdivi-

sion and Govindan-Wilson solve no instances for the largest two sizes, while

Algorithm 2 still finds a solution for most games.

25

0.1

1

10

100

1000

10000

3 4 5 6 7 8
Actions

Tim
e(s

)

Alg2
SD
GW

Fig. 10. Unconditional average time; for Algorithm 2, Simplicial Subdivision, and

Govindan-Wilson on 6-player “Uniformly Random Games”, as the number of actions

is scaled.

0.001

0.01

0.1

1

10

100

1000

10000

3 4 5 6 7
#Players

Tim
e(s

)

Alg2
SD
GW

Fig. 11. Unconditional average time; for Algorithm 2, Simplicial Subdivision, and

Govindan-Wilson on 5-action “Uniformly Random Games”, as the number of players

is scaled.

7.3 On the Distribution of Support Sizes

In this section we describe the nature of equilibria that are present in our

dataset, and the kinds of equilibria discovered by different algorithms.

26

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

D 1 D 2 D 3 D 4 D 5 D 6 D 7 D 8 D 9 D 1
0
D 1
1
D 2
3
D 1
3
D 1
4
D 1
5
D 1
6
D 1
7
D 1
8
D 1
9
D 2
0
D 2
1
D 2
2
D 2
4

Distribution

%
Pu
re
Str
ate
gy
 E
q.

Fig. 12. Percentage of instances possessing a pure strategy NE, for 2-player, 300-ac-

tion games.

7.3.1 Pure Strategy Equilibria

By definition, the first step of both Algorithm 1 and Algorithm 2 is to check

whether the input game has a pure strategy equilibrium. This step can be per-

formed very fast even on large games. It is interesting to see just how much of

performance of these algorithms is due to the existence of pure strategy equi-

libria. Figures 12 and 13 show the fraction of games in each distribution that

posses a PSNE, for 2-player, 300-action and 6-player, 5-action games, respec-

tively. These figures demonstrate that a pure strategy equilibrium is present

in many, though not all, games generated by GAMUT. We note, however, that

our algorithms often perform well even on distributions that don’t all have a

PSNE, as they sometimes find equilibria of larger sizes.

These graphs thus demonstrate that looking for pure strategy Nash equilibria

could be a useful preprocessing step for Lemke-Howson, Simplicial Subdivi-

sion , and Govindan-Wilson, but that at the same time, even with such a

preprocessing step, these algorithms would not catch up with Algorithm 1

27

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

D 1 D 2 D 3 D 4 D 5 D 6 D 7 D 8 D 9 D 1
0
D 1
1
D 1
2
D 1
3
D 1
4
D 1
5

D 1
6
D 1
7
D 1
8

D 1
9
D 2
0
D 2
1
D 2
2

Distribution

%
Pu
re
Str
ate
gy
 E
q.

Fig. 13. Percentage of instances possessing a pure strategy NE, for 6-player, 5-action

games.

and Algorithm 2. This step is essentially the first step of our algorithms, but

in the cases that are not caught by this step, our algorithms degrade gracefully

while the others do not.

7.3.2 Support Sizes Found

Many researchers feel that equilibria with small support sizes are easier to

justify. It is, therefore, interesting to see what kinds of equilibria the different

algorithms find in games of interest. Specifically, we would like to see whether

other algorithms find equilibria that correspond to our own heuristics of small

and balanced supports.

Figures 14 and 15 show the average total size of the support (i.e.
∑

i xi) of

the first equilibrium found by each algorithm on 2-player, 300-action and 6-

player, 5-action games, respectively. Total size 2 in figure 14, and total size

6 in figure 15 correspond to a pure strategy equilibrium. As expected, our

algorithms tend to find equilibria with much smaller supports than those of

28

2
4
6
8

10
12
14
16
18
20
22

D 1 D 2 D 3 D 4 D 5 D 6 D 7 D 8 D 9 D 1
0
D 1
1
D 2
3
D 1
3
D 1
4
D 1
5
D 1
6
D 1
7
D 1
8
D 1
9
D 2
0
D 2
1
D 2
2
D 2
4

Distribution

To
tal
 Su

pp
ort
 Si
ze

Alg1
LH

Fig. 14. Average of total support size for found equilibria, on 2-player, 300-action

games.

other algorithms, even on distributions where pure strategy Nash equilibria

often exist. Notice, however, that all of the algorithms have a bias towards

somewhat small support sizes. On average, the equilibria found by Lemke-

Howson in 2-player games have at most 10 actions per player (out of 300), while

the equilibria found by Govindan-Wilson on 6-player games have on average

2.3 actions per player out of 5. For comparison, the absolute largest equilibrium

found by Govindan-Wilson across all instances had between 3 and 5 actions for

each player (4.17 on average). The games with these large equilibria all came

from Covariance Game distributions. They all also possessed either a PSNE,

or a NE with at most 2 actions per player, and were all quickly solved by

Algorithm 2. The largest equilibrium among 2-player games that was found

by Lemke-Howson had 122 actions for both players. That game came from

distribution D23.

The second search bias that our algorithms employ is to look at balanced

supports first. Figure 16 shows the average measure of support balance (i.e.

maxi,j(xi − xj)) of the first equilibrium found by each algorithm on 6-player,

29

6
7
8
9

10
11
12
13
14
15

D 1 D 2 D 3 D 4 D 5 D 6 D 7 D 8 D 9 D 1
0

D 1
1

D 1
2

D 1
3

D 1
4

D 1
5

D 1
6

D 1
7

D 1
8

D 1
9

D 2
0

D 2
1

D 2
2

Distribution

To
tal
 Su

pp
ort
 Si
ze

Alg2
SD
GW

Fig. 15. Average of total support size for found equilibria, on 6-player, 5-action

games.

5-action games. We omit a similar graph for 2-player games, since almost al-

ways perfectly balanced supports were found by both Algorithm 1 and Lemke-

Howson. The only exception was distribution D24, on which Lemke-Howson

found equilibria with average (dis)balance of 13.48. On 6-player games, as

again expected, Algorithm 2 tends to find equilibria that are almost balanced,

while the other two algorithms find much less balanced supports. Nevertheless,

it is important to note that the balance of the supports found by Algorithm 2

is not uniformly zero, suggesting that it still finds many equilibria that are not

pure strategy. Thus, once again, we see that using the preprocessing step of

finding PSNEs first, while greatly improving previous algorithms, would not

be enough to close the gap between them on the one hand and Algorithm 2

on the other.

30

0

0.5

1

1.5

2

2.5

D 1 D 2 D 3 D 4 D 5 D 6 D 7 D 8 D 9 D 1
0

D 1
1

D 1
2

D 1
3

D 1
4

D 1
5

D 1
6

D 1
7

D 1
8

D 1
9

D 2
0

D 2
1

D 2
2

Distribution

Su
pp
ort
 B
ala
nc
e

Alg2
SD
GW

Fig. 16. Average of support size balance for found equilibria, on 6-player, 5-action

games.

8 Conclusion and Future Work

In this paper, we presented a pair of algorithms for finding a sample Nash

equilibrium. Both employ backtracking approaches (augmented with pruning)

to search the space of support profiles, favoring supports that are small and

balanced. Making use of a new, extensive testbed, we showed that they out-

perform the current state of the art.

Another approach that we have tried, and found to be successful, is to overlay

a particular heuristic onto Lemke-Howson. Recall that, in the execution of

Lemke-Howson, the first pivot is determined by an arbitrary choice of an

action of the first player. This initial pivot then determines a path to a NE.

Thus, we can construct an algorithm that, like our two algorithms, is biased

towards “simple” solutions through the use of breadth-first search– initially, it

branches on each possible starting pivot; then, on each iteration, it performs a

single pivot for each possible Lemke-Howson execution, after which it checks

whether a NE has been found. This modification significantly outperforms the

31

standard Lemke-Howson algorithm on most classes of games. However, it still

performs worse than our Algorithm 1.

The most difficult games we encountered came from the “Covariance Game”

model, as the covariance approaches its minimal value, and this is a natural

target for future algorithm development. We expect these games to be hard

in general, because, empirically, we found that as the covariance decreases,

the number of equilibria decreases as well, and the equilibria that do exist are

more likely to have support sizes near one half of the number of actions, which

is the support size with the largest number of supports.

One direction for future work is to employ more sophisticated CSP techniques.

The main goal of this paper was to show that our general search methods per-

form well in practice, and there are many other CSP search and inference

strategies which may improve its efficiency. Another promising direction is to

explore is local search, in which the state space is the set of all possible sup-

ports, and the available moves are to add or delete an action from the support

of a player. While the fact that no equilibrium exists for a particular support

does not give any guidance as to which neighboring support to explore next,

one could use a relaxation of Feasibility Program 1 that penalizes infeasibility

through an objective function. More generally, our results show that AI tech-

niques can be successfully applied to this problem, and we have only scratched

the surface of possibilities along this direction.

References

Blum, B., Shelton, C., Koller, D., 2003. A continuation method for Nash equi-

libria in structured games. In: Proceedings of the 18th International Joint

32

Conference on Artificial Intelligence.

Conitzer, V., Sandholm, T., 2003. Complexity results about Nash equilibria.

In: Proceedings of the 18th International Joint Conference on Artificial In-

telligence.

Cook, S. A., Mitchell, D. G., 1997. Finding hard instances of the satisfiability

problem: A survey. In: Du, Gu, Pardalos (Eds.), Satisfiability Problem: The-

ory and Applications. Vol. 35. American Mathematical Society, pp. 1–17.

URL citeseer.ist.psu.edu/cook97finding.html

Dechter, R., 2003. Constraint Processing. Morgan Kaufmann.

Dickhaut, J., Kaplan, T., 1991. A program for finding Nash equilibria. The

Mathematica Journal, 87–93.

Gilboa, I., Zemel, E., 1989. Nash and correlated equilibria: Some complexity

considerations. Games and Economic Behavior 1, 80–93.

Govindan, S., Wilson, R., 2003. A global newton method to compute Nash

equilibria. In: Journal of Economic Theory.

ILOG, 2004. Cplex. Http://www.ilog.com/products/cplex.

Karmarkar, N., 1984. A new polynomial-time algorithm for linear program-

ming. Combinatorica 4, 373–395.

Khachiyan, L., 1979. A polynomial time algorithm for linear programming.

Dokl. Akad. Nauk SSSR 244, 1093–1096.

Kohlberg, E., Mertens, J., 1986. On the strategic stability of equilibria. Econo-

metrica 54.

Koller, D., Milch, B., 2001. Multi-agent influence diagrams for representing

and solving game. In: Proceedings of the 17th International Joint Conference

on Artificial Intelligence.

Lemke, C., 1965. Bimatrix equilibrium points and mathematical programming.

Management Science 11, 681–689.

33

Lemke, C., Howson, J., 1964. Equilibrium points of bimatrix games. Journal

of the Society for Industrial and Applied Mathematics 12, 413–423.

Mangasarian, O., 1964. Equilibrium points of bimatrix games. Journal of the

Society for Industrial and Applied Mathematics 12, 780–780.

McKelvey, R., McLennan, A., 1996. Computation of equilibria in finite games.

In: H. Amman, D. Kendrick, J. R. (Ed.), Handbook of Computational Eco-

nomics. Vol. I. Elsevier, pp. 87–142.

McKelvey, R., McLennan, A., 1997. The maximal number of regular totally

mixed nash equilibria. Journal of Economic Theory 72, 411–425.

McKelvey, R., McLennan, A., Turocy, T., 2004. Gambit: Software tools for

game theory. Available at http://econweb.tamu.edu/gambit/.

McLennan, A., Berg, J., 2002. The asymptotic expected number of Nash equi-

libria of two player normal form games. Mimeo, University of Minnesota.

Megiddo, N., Papadimitriou, C., 1991. A note on total functions, existence

theorems and complexity. Theoretical Computer Science 81, 317–324.

Murtagh, B., Saunders, M., 2004. Minos. Http://www.sbsi-sol-optimize.com.

Nash, J., 1950. Equilibrium points in n-person games. Proceedings of the Na-

tional Academy of Sciences of the United States of America 36, 48–49.

Nudelman, E., Wortman, J., Shoham, Y., Leyton-Brown, K., 2004. Run the

GAMUT: A comprehensive approach to evaluating game-theoretic algo-

rithms. In: Proceedings of the Third International Joint Conference on Au-

tonomous Agents & Multi Agent Systems.

Papadimitriou, C., 2001. Algorithms, games, and the internet. In: Proceedings

of the 33rd Annual ACM Symposium on the Theory of Computing. pp. 749–

753.

Rinott, Y., Scarsini, M., 2000. On the number of pure strategy nash equilibria

in random games. Games and Economic Behavior 33, 274–293.

34

van der Laan, G., Talman, A., van der Heyden, L., 1987. Simplicial variable

dimension algorithms for solving the nonlinear complementarity problem

on a product of unit simplices using a general labelling. Mathematics of

Operations Research.

von Stengel, B., 2002. Computing equilibria for two-person games. In: Au-

mann, R., Hart, S. (Eds.), Handbook of Game Theory. Vol. 3. North-

Holland, Ch. 45, pp. 1723–1759.

Wood, M., Dantzig, G., 1949. Programming of interdependent activities. i.

general discussion. Econometrica 17, 193–199.

35

