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Announcements (Wed. Feb. 11)

 HW 5 will be posted by tomorrow (Thu)
morning.

* Project: More information in the lab on Monday!
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Basic Query: Word Counts

* How many times does each word appear
in the document?



Problem 1

e Whatis a word?
—I'm ... 1 word or 2 words {I'm} or {I, am}
— State-of-the-art ... 1 word or 4 words

— San Francisco ... 1 or 2 words

— Other Languages
* French: I'ensemble
* German: freundshaftsbezeigungen

* Chinese: i &1l BB H) T (no spaces)

This, one, easy, sentence
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Solution: Tokenization

 For English:

— Splitting the text on non alphanumeric
characters is a reasonable way to find
individual words.

* For other languages:

— Need more sophisticated algorithms for
identifying words.
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Finding simple phrases

* Want to find pairs of tokens that always
occur together (co-occurence)

e Intuition:
Two tokens are co-occurent
if they appear together more
often than “random”

— More often than monkeys
typing English words

http://tmblr.co/ZiEAFywGEckV



Formalizing “more often than random”

* Language Model

— Assigns a probability P(x1, x2, ..., xk) to any
sequence of tokens.

— More common sequences have a higher

probability

— Sequences of length 1: unigrams
— Sequences of length 2: bigrams
— Sequences of length 3: trigrams
— Sequences of length n: n-grams



Formalizing “more often than random”

* Suppose we have a language model

— P(“San Francisco”) is the probability that
“San” and “Francisco” occur together (and in
that order) in the language.



Formalizing “random”: Bag of words

* Suppose we only have access to the
unigram language model

— Think: all unigrams in the language thrown into a
bag with counts proportional to their P(x)

— Monkeys drawing words at random from the bag

— P(“San”) x P(“Francisco”) is the probability
that “San Francisco” occurs together in the
(random) unigram model



Formalizing “more often than random”

 Pointwise Mutual Information:

P(xl' xZ)

PMI(x,, x,) = log, P(x1) - P(x2)

— Positive PMI suggests word co-occurrence

— Negative PMI suggests words don’t appear
together



What is P(x)?

* “Suppose we have a language model ...”

* Idea: Use counts from a large corpus of
text to compute the probabilities



What is P(x)?

* Unigram: P(x) = count(x) / N
* count(x) is the number of times token x appears
* N is the total # tokens.

* Bigram: P(xy, X,) = count(xy, x,) / N
* count(xy,x,) = # times sequence (Xx;,X,) appears
 Trigram: P(x;, x,, X3) = count(Xy, X,, X3) / N

* count(xy,X,,X;) = # times sequence (X,X,,X3) appears



What is P(x)?

* “Suppose we have a language model ...”

* Idea: Use counts from a large corpus of
text to compute the probabilities



Large text corpora

* Corpus of Contemporary American
English

— htt

p://corpus.byu.edu/coca/

* Google N-gram viewer

— htt

ps://books.google.com/ngrams
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Summary of Problem 1

« Word tokenization can be hard

» Space/non-alphanumeric words may
oversplit the text

* We can find co-ocurrent tokens:
— Build a language model from a large corpus

— Check whether the pair of tokens appear more

often than random using pointwise mutual
information.



Language models ...

* ... have many many applications

— Tokenizing long strings

— Word/query completion/suggestion
— Spell checking

— Machine translation



Problem 2

* A word may be represented in many
forms

— car, cars, car’s, cars’ =2 car

— automation, automatic 2 automate

* Lemmatization: Problem of finding the
correct dictionary headword form



Solution: Stemming

* Words are made up of

— Stems: core word

— Affixes: modifiers added (often with
grammatical function)

* Stemming: reduce terms to their stems by
crudely chopping off affixes

— automation, automatic 2 automat
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Porter’s algorithm for English

* Sequences of rules applied to words

Example rule sets:

.*)sses$/ 2> \1lss
.*)ies$/ > \1i
.*)ss$/ 2> \ls
.*[As])s$/ > \1

.*[aeioul]+.*)ing$/ > \1

.*[aeiou]+.*)ed$/ = \1




Any other problems?

* Same words that mean different things
— Florence the person vs Florence the city
— Paris Hilton (person or hotel)
* Abbreviations
— .B.M vs International Business Machines
* Different words meaning same thing
— Big Apple vs New York



Any other problems?

* Same words that mean different things
— Word Sense Disambiguation

 Abbreviations

— Translations

* Different words meaning same thing
— Named Entity Recognition & Entity Resolution



Outline

* Basic Text Processing

 Finding Salient Tokens
— TFIDF scoring

* Document Similarity & Keyword Search
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Summarizing text

Belinelli's late jumper gives Popovich his 1000th career w..
Yahoo Sports (blog) - 4 hours ago

Gregg Popovich of the San Antonio Spurs has already established
himself ... Nevertheless, it's pretty cool and rare any time a coach hit:
1,000 ...

Recommended Reviews for Udupi Cafe

Reviews Matching: indian restaurant || search Reviews

Review Highlights What's this?

"They are absolutely delicious try the dosa and mango lasy yum." Rating Distribution | Trend
In 27 reviews )

!

. "Excellent buffet with an awesome selection." 4 stars
In 40 reviews '
|

' "The fresh coconut chutney rocks my world, as does the service at..." 2 stars
In 6 reviews




Finding salient tokens (words

* Most frequent tokens?

Rank
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day
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Document Frequency

* Intuition: Uninformative words appear in
many documents (not just the one we are
concerned about)

e Salient word:
— High count within the document
— Low count across documents



TFeIDF score

* Term Frequency (TF):
TF(x) = log;o(1 + c(x)) or c(x)

c(x) is # times x appears in the document

* Inverse Document Frequency (IDF):

IDF(x) = logy, (;VFd‘E;S))

DF(x) is the number of documents x appears in.




Back to summarization

Recommended Reviews for Udupi Cafe

Reviews Matching: indian restaurant Search Reviews
Review Highlights What's this?
5 "They are absolutely delicious try the dosa and mango lasy yum." Rating Distribution | Trend

m "Excellent buffet with an awesome selection.”

L@ "The fresh coconut chutney rocks my world, as does the service at..."

* Simple heuristic:

— Pick sentences S = {x1, x2, ..., xk} with the
highest:

Salience(S) = l?llz TF(x) - IDF(x)

X ES



Outline

* Document Similarity & Keyword Search

— Vector Space Model & Cosine Similarity
— Inverted Indexes



Document Similarity

Yahoo Sports (blog) - 4 hours ago

Gregg Popovich of the San Antonio Spurs has already established
himself ... Nevertheless, it's pretty cool and rare any time a coach hits
1,000 ...

Spurs' Gregg Popovich becomes 9th NBA coach to win 1000 games
Sl.com - 20 hours ago

SVG: Popovich's 1000 wins 'a great accomplishment'

Detroit Free Press - 2 minutes ago

Gregg Popovich Wins 1000th Game with Milestones Ahead & Other ...

In-Depth - Bleacher Report - 18 hours ago

Six things to know about Gregg Popovich's 1000th win

Blog - Washington Post (blog) - 20 hours ago

Raptors Beat Spurs, Deny Popovich 1000th Win
In-Depth - ABC News - Feb 8, 2015

Belinelli's late jumper gives Popovich his 1000th career w...
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Vector Space Model

* Let V=1{xq, X,, ..., X} be the set of all
tokens (across all documents)

e A document is a n-dimensional vector
D=[w, w, ..., w_]

where w. = TFIDF(x,, D)



Distance between documents

* Euclidean distance x

D1 =[wy, wy, ..., W]

D2 =1y, yo -+ ¥al

d(D1,D2) =

* Why?




Cosine Similarity

A

D1

)6

D2

d(D1,D2) = cos (0)
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Cosine Similarity

* D1 =[w;, w,, ..., W]
* D2=1[y, yy .-y ¥n

]
s
d(D1,D2) = i Wit Y
\/ZiWiZ \/Ziyiz

'




Keyword Search

« How to find documents that are similar to
a keyword query?

* Intuition: Think of the query as another
(very short) document



Keyword Search

» Simple Algorithm

For every document D in the corpus
Compute d(q, D)

Return the top-k highest scoring documents



Does it scale?
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Inverted Indexes

o Let V={x1, x2, ..., xn} be the set of all
token

* For each token, store
<token, sorted list of documents token
appears in>
—<“caeser”, [1,3,4,6,7,10,...]>

* How does this help?



Using Inverted Lists

* Documents containing “caesar”

— Use the inverted list to find documents
containing “caesar”

— What additional information should we keep
to compute similarity between the query and
documents?



Using Inverted Lists

* Documents containing “caesar” AND
“cleopatra”

— Return documents in the intersection of the
two inverted lists.

— Why is inverted list sorted on document id?

« OR? NOT?

— Union and difference, resp.



Many other things in a modern
search engine ...

* Maintain positional information to answer
phrase queries

* Scoring is not only based on token
similarity
— Importance of Webpages: PageRank
(in later classes)

e User Feedback

— Clicks and query reformulations
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Summary

* Word counts are very usetul when
analyzing text

— Need good algorithms for tokenization,
stemming and other normalizations

* Algorithm for finding word co-occurrence
— Language Models
— Pointwise Mutual Information
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Summary (contd.)

e Raw counts are not sufficient to find
salient tokens in a document

— Term Frequency x Inverse Document
Frequency (TFIDF) scoring

* Keyword Search

— Use Cosine Similarity over TFIDF scores to
compute similarity

— Use Inverted Indexes to speed up processing.



