Graph Data + MapReduce

Everything Data
CompSci 216 Spring 2015

E DUKE
COMPUTER SCIENCE

Announcements (Wed. Apr. 1)

* Homework #11 to be posted by tomorrow

» Poll: are enough groups ready to start
mini-conference on Monday April 20?

— Originally scheduled for Wednesday April 22
and Thursday April 30 (final slot)

“Importance” of nodes/edges
AKA centrality

Which web pages are
the most important in a

web graph?

Which friendships are
the most important in a
social network?

Web search Qg

* Recall TF-IDF + cosine similarity
* Isit enough?

— A relevant page may not contain all terms
being searched

— An irrelevant page may contain many!
* Any measure based on content alone invites spam
Structure of the web graph comes to rescue!
— Nodes: pages
— Directed edges: links

Rank by in-degree

That is, the number of incoming links

* Think of each URL pointing to your page as a
“vote” for its importance

Problem?

* Still easy to spam

— Just create lots of pages linking to the one you
want to promote!

— Culprit: measure based on “local” link structure

PageRank

Pages pointed to by
important pages should
be more important

— Definition is recursive by design
— Based on global link structure; harder to spam

http://en.wikipedia.org/wiki/File:Google_page_brin.jpg

Naive PageRank

* F(p): set of pages that p points to
* B(p): set of pages that point to p

PR(p) = X jepp) PR(q) / 1F(q)]

— Each page p gets a I

boost from every
page g pointing to it

— Each page g
distributes its ﬁ
importance to
pages it points to PageRank °

http://en.wikipedia.org/wiki/File:PageRank-hi-res.png

Computing naive PageRank

1. Initially, set all PageRank’s to 1/N

— N is the total number of pages

2. For each page p, compute

2. qeBp) PR(9) /[1F(q)]
3. Update all PageRank’s

4. Go back to 2, unless values have
converged

“Random surfer” model

e A random surfer

— Starts with a
random page

— Randomly selects
a link on the page
to visit next

— Never uses the “back” button

= PageRank of p measures the probability
that a random surfer visits page p

Image: http://www.zdnet.com/on-the-internet-now-everybody-knows-youre-not-a-dog-7000011439/

Problem: “dead end”

A page with no outgoing link —
all importance will eventually “leak” out

10

Problem: “spider trap”

R —

@ /
[

7
A group of pages with
no links out of the group—
all importance will eventually be

“trapped” by them

12

Revised random surfer model

Instead of always following a link on the
current page, flip a coin and “teleport” to a
random page with some probability

What about dead ends?

At a dead end, what if the coin flip tells us
not to teleport?

* Option 1: just teleport anyway

— Make the dead end point to all pages
* Option 2: stay put

— Make the dead end point to itself

Practical PageRank

PR(p) = (1 = d)/N +d -} ,epgp) PR(9)/1F(q)|
* “Damping” factor d between 0 and 1

— Typically between 0.8 to 0.9
= Probability of following links

* Graph effectively becomes strongly
connected —no dead ends or spider traps

* Computation is the same as naive
PageRank, except the formula for
updating PageRank is revised accordingly

Personalized PageRank

Why should everybody rank pages the same
way? Can we tailor PageRank toward
individual preferences?

* Many methods exist, but they are all
variants of the random surfer model,
where the surfer teleports to different
pages with different probabilities
(personalized)

16

Most important links [i

http://www.bigvisionseo.com.au/wp-content/uploads/2013/05/Link-Building-Metrics.jpg

Bridge?

* That is, removing (1, v) will put u and v in
separate connected components
— Intuition: big impact on connectivity

But what about a bridge to a tiny island?

Edge between two hub nodes?

N
A

7
N

Important

Unimportant

But in general:

* What qua
» Still, whic

ifies as a hub?

n one do we remove?

 Will it real

ly impact connectivity?

“Betweenness” measure

* Given nodes u and v, imagine pushing one
unit of “tlow” from u to v

* This flow divides itself evenly along all

possible shortest paths from u to ©
a5 1/2

1/2 —
s 1/2 Only showing contribution
1= Ho— 172 from flow between (u, v) here

° Betweenness of an edge e = total amount of
flow it carries (counting flows between all
pairs of nodes along e)

Betweenness example G,

* Which one of these 4 edges Ve
has the highest betweenness?
— All four edges carry flow on G Gy

» Half of the shortest paths between G, and G, nodes
» Half of the shortest paths between G, and G; nodes

— In addition:
* e, carries flow on all shortest paths between G; and G, nodes
* ey carries flow on all shortest paths between G; and G; nodes

* e, carries flow on all shortest paths between G, and G, nodes
* ey, carries flow on all shortest paths between G, and G, nodes

— Suppose |G, 1=1G,|<|IG41=IG,I; then e, has the
highest betweenness

Betweenness for partitioning

* Calculate betweenness for all edges

* Remove the edge with the highest
betweenness

 Until the desired partitioning is obtained,
repeat the above steps

Computationally expensive on big graphs;
approximation or other methods often used instead

From theory to implementation

http://debane.org/franck/wp-content/uploads/2010/09/scalability.jpg

22

Large-scale PageRank

Compute in parallel with lots of machines,
e.g., using

23

Overall approach (conceptual)

For each iteration:

* Input: (p,) e
* Map: for each page p, emit

—{p,)

—(q,) for each g that p points to
* Reduce: for each page p

— Compute PR(p) as the weighted sum of 1/N
and total contributions

The Devil is in the detail

How do we get N (total # pages)?

* A single reducer would be needed upfront
just to set the initial value of 1/N

* Trick: pretend all PR’s get multiplied by N

~PRN(p) = (1-d) +d -3,) PRN(9)/ | E(9)],
where PRN(p) = PR(p) X N

— No longer probabilities, but still good for ranking

* Turns out we still need N (more on it later)

— Just let map emit (“N”, 1) for each page and let
reduce sum them up

More detalils

Recall dead ends (pages with no outgoing links)

* Suppose we choose option 1 —make them
point to every page

— Implementing it naively adds a lot of overhead

* Instead, sum up contributions from all dead
ends, and apply this total to all pages
— Each page then gets 1/N of the total
* So we still need N here

— Use a second MapReduce job in each iteration to
apply contributions from dead ends

Even more details

How do we pair up each page with N and
total contribution from dead ends?

* Need a “broadcast” primitive

— Practical implementations of MapReduce
often provide workarounds
* E.g.: Hadoop has a distributed file system:
broadcast = all tasks read the same file
— In “pure” MapReduce, map can replicate
input for each reduce key

* You can invent keys to capture the desired degree
of parallelism/replication

sumimary

* Centrality measures
— E.g., PageRank and betweenness
— Others include degree, closeness, etc.

— No one-size-fit-all; best choice depends on
what you want

— “Global” measures are more robust

* Scalability with MapReduce

— Perhaps not the most natural/powerful model
for graphs, but it works!

