Data Streams

Everything Data CompSci 216 Spring 2015

Announcements (Wed. Apr. 8)

- Homework #12 to be posted by tomorrow
- Project mid-term feedback to be emailed by this weekend
- T-shirt design contest: see email for details

Data stream

- A potentially infinite sequence, where data arrives one record at a time
- We only get one look—can't go back
- We want to answer a standing query that produces new/updated results as stream goes by
- We have limited space to remember whatever we deem necessary to answer the query

Several questions about streams

How do we maintain a random sample of size *n* for all data we've seen so far?

Sample can be used to answer queries

How do we maintain a data structure to check if a new arrival has appeared before?

E.g., a URL shortening service

How do we count the number of unique records seen so far?

– E.g., # of unique visitors (by IP) to a website

Sampling static data vs. stream

- With a static dataset
 - We know the total data size *N*
 - We can access an arbitrary record
- With a stream
 - There is no *N*, just the number of records we have previously seen
 - We only get one look of any record, in arrival order

Reservoir sampling

- Make one pass over data
- Maintain a reservoir of *n* records
- After reading *t* records, the reservoir is a random sample of the first *t* records

• The algorithm tells us how to update the reservoir upon every new record arrival

Simple algorithm

- Initialize reservoir to the first *n* records
- For the *t*-th (new) record
 - Pick a random number x between 1 and t
 - If $x \le n$, then replace the x-th record in the reservoir with the new record

That's it!

But why?

- If t = n, obviously the reservoir has a "random sample" of all records seen so far
- Suppose the reservoir is a random sample of the first t records for t = k 1
 - I.e., P[r in reservoir after k-1 steps] = n/(k-1)
- What happens when t = k?
 - The new record is included with prob. n / k
 - For any other record r, P[r in reservoir]= P[r in reservoir after k - 1 steps]× P[r is not replaced in step k]= $[n/(k-1)] \times (1 - 1/k) = n / k$

An improvement

What if skipping new records is cheaper than accessing them one by one?

After adding the *t*-th record to reservoir...

- Simulate forward until we need to add a new record in the reservoir; skip until then
- Or calculate the CDF of skip size $P[\text{skip size} \le s] = 1 \left(\frac{t+1-n}{t+1}\right) \left(\frac{t+2-n}{t+2}\right) \cdots \left(\frac{t+s+1-n}{t+s+1}\right)$
 - Sample from this CDF, skip accordingly
 - Pick one record in reservoir to replace

Summary of reservoir sampling

 Helps create a "running" random sample of fixed size over a stream

 Very useful when computing/accessing the whole dataset is expensive

Outline

How do we maintain a random sample of size *n* for all data we've seen so far?

Sample can be used to answer queries

How do we maintain a data structure to check if a new arrival has appeared before?

E.g., a URL shortening service

How do we count the number of unique records seen so far?

- E.g., # of unique visitors (by IP) to a website

Problem boils down to...

- Give a large set *S* (e.g., all values seen so far), check whether a given value *x* is in *S*
- Suppose we have *n* bits of storage $(n \ll |S|)$
 - Cannot afford to store S

Approximation comes to rescue

- If *x* is in *S*, return *true* with prob. 1
 - I.e., no false negatives
- If *x* is not in *S*, return *false* with high prob.
 - I.e., possible false positives

Primitive: hash function

$$h: S \longrightarrow \{1, 2, ..., n\}$$

– Hashes values uniformly to integers in [1, n], i.e.: P[h(x) = i] = 1/n

• "Compressing" a value down with one h loses too much information, so we use k independent hash functions $h_1, h_2, ..., h_k$

Bloom filter

Initialization

• Set all *n* bits to 0

Add x to S

- Compute $h_1(x), h_2(x), ..., h_k(x)$
- Set the corresponding *k* bits to 1

Check if *x* is in *S*

- Compute $h_1(x), h_2(x), ..., h_k(x)$
- Return *true* iff the corresp. *k* bits are all 1

No false negatives

If *x* is really in *S*

- Then by construction we have set bits $h_1(x), h_2(x), ..., h_k(x)$ to 1
- So check will surely return true

False positive probability

If x is not in S

- Check returns *true* if each bit $h_j(x)$ is 1 due to some other value(s) in S
- P[bit i is 1] = 1 - P[bit i was not set by k|S| hashes]= $1 - (1 - 1/n)^{k|S|}$
- P[k particular bits are 1] = $(1 - (1 - 1/n)^{k|S|})^k$ $\approx (1 - e^{-k|S|/n})^k$

Example

- Suppose there are $|S| = 10^9$ elements
- Suppose we have 1 GB (8×10⁹ bits) memory

If
$$k = 1$$

• P[false positive] $\approx (1 - e^{-k|S|/n})^k = 1 - e^{-1/8}$ ≈ 0.1175

If
$$k = 2$$

• P[false positive] $\approx (1 - e^{-k|S|/n})^k = (1 - e^{-2/8})^2$ ≈ 0.0493

Example

- Suppose there are $|S| = 10^9$ elements
- Suppose we have 1 GB (8×10⁹ bits) memory

Summary of Bloom filter

- Helps check membership in a large set that cannot be stored entirely
- No false negatives
 - Good for applications like URL shortener
- False negative probability can be tweaked by the choice of *n* and *k*

Outline

How do we maintain a random sample of size *n* for all data we've seen so far?

Sample can be used to answer queries

How do we maintain a data structure to check if a new arrival has appeared before?

E.g., a URL shortening service

How do we count the number of unique records seen so far?

- E.g., # of unique visitors (by IP) to a website

Can you use a Bloom filter?

- Increment a counter whenever check returns false for an incoming value
- Because of 0 false negative and non-0 false positive probabilities, we will consistently underestimate the # of distinct values
- Also, the Bloom filter does more than we need—can we use the *n* bits more efficiently?

FM (Flajolet-Martin) sketch

Let $Tail_0(h(x)) = \#$ of trailing consecutive 0's

- $Tail_0(101001) = 0$
- $Tail_0(101010) = 1$
- $Tail_0(001100) = 2$
- $Tail_0(101000) = 3$
- $Tail_0(000000) = 6$

FM sketch

- Maintain a value *K* (max 0-tail length)
- Initialize *K* to 0
- For each new value
 - Compute $Tail_0(h(x))$
 - Replace *K* with this value it is greater than *K*
- $F' = 2^K$ is an estimate of F, the true number of distinct elements

• *K* require very little space to store

Rough intuition

If we have *F* distinct elements, we'd expect

- F/2 of them to have $Tail_0(x) = 0$
- F/4 of them to have $Tail_0(x) = 1$
- •
- $F/2^i$ of them to have $Tail_0(x) = i$
- •

So $F' = 2^K$ is pretty good guess of F

How good is the result?

- *F*: the true number of distinct elements
- *F*': guess by FM sketch
- We can show that for all c > 3, $P[F/c \le F' \le cF] > 1 3/c$

But that's not very accurate!

Use more sketches!

- Use the "median of means" trick
- Maintain *a* × *b* FM sketches
 - Use independent hash functions!
- Compute the mean over each group of a
- Return the median of b means as answer

Summary of FM sketch

- Helps estimate # of distinct elements in a large set that cannot be stored entirely
- Each FM sketch is very rough, but groups of them improve estimation
- Trick question: do FM sketches support membership check like Bloom filter?
 - No—too much error on any particular check
 - Specialization gives us better efficiency

Summary

Tricks for big data covered in class

- Parallel processing (e.g., MapReduce)
- Approximate processing
 - Sampling (downsize data)
 - Stream processing (linear time, limited space)

