Data Streams

Everything Data
CompSci 216 Spring 2015

E- DUKE
COMPUTER SCIENCE

Announcements (Wed. Apr. 8)

* Homework #12 to be posted by tomorrow

* Project mid-term feedback to be emailed
by this weekend

 T-shirt design contest: see email for
details

Data stream

* A potentially infinite sequence, where
data arrives one record at a time

* We only get one look—can’t go back

* We want to answer a standing query that
produces new/updated results as stream

goes by

* We have limited space to remember
whatever we deem necessary to answer
the query

Several questions about streams

How do we maintain a random sample of
size n for all data we’ve seen so far?

— Sample can be used to answer queries

How do we maintain a data structure to
check if a new arrival has appeared before?
— E.g., a URL shortening service
How do we count the number of unique
records seen so far?
— E.g., # of unique visitors (by IP) to a website

Sampling static data vs. stream

« With a static dataset
— We know the total data size N
— We can access an arbitrary record

 With a stream

— There is no N, just the number of records we
have previously seen

— We only get one look of any record, in arrival
order

Reservoir sampling

* Make one pass over data
* Maintain a reservoir of n records

 After reading t records, the reservoir is a
random sample of the first t records

* The algorithm tells us how to update the
reservoir upon every new record arrival

Simple algorithm

e Initialize reservoir to the first n records
* For the t-th (new) record

— Pick a random number x between 1 and ¢

— If x <n, then replace the x-th record in the
reservoir with the new record

 That's it!

But why?

* If t =n, obviously the reservoir has a
“random sample” of all records seen so far

* Suppose the reservoir is a random sample of
the first t records for t=k -1

— Le,, P[r in reservoir after k — 1 steps] = n/(k—1)
* What happens when t = k?
— The new record is included with prob. n / k

— For any other record r, P[r in reservoir]
= P[r in reservoir after k — 1 steps]
x P[r is not replaced in step k]

=[n/(k-1D]x(A-1/k)=n/k

An improvement

What if skipping new records is cheaper
than accessing them one by one?

After adding the t-th record to reservoir...

* Simulate forward until we need to add a
new record in the reservoir; skip until then

* Or calculate the CDF of skip size
P[skip size < 5] = 1-(”1‘”)(”2‘”)...(”Hl—n)

r+1 r+2 r+s+1

— Sample from this CDF, skip accordingly

— Pick one record in reservoir to replace

Summary of reservoir sampling

* Helps create a “running” random sample
of fixed size over a stream

* Very useful when computing/accessing
the whole dataset is expensive

11

Outline

How do we maintain a random sample of
size n for all data we’ve seen so far?

— Sample can be used to answer queries

How do we maintain a data structure to
check if a new arrival has appeared before?
— E.g., a URL shortening service
How do we count the number of unique
records seen so far?
— E.g., # of unique visitors (by IP) to a website

Problem boils down to...

* Give a large set S (e.g., all values seen so far),
check whether a given value xisin §

* Suppose we have n bits of storage (n <1S51)
— Cannot afford to store S

Approximation comes to rescue

* If xisin S, return true with prob. 1

— Le., no false negatives

 If x is not in S, return false with high prob.
— Le., possible false positives

Primitive: hash function

h:S —{1, 2, ..., n}

— Hashes values uniformly to integers in [1, n],
ie.: P[h(x)=1i]=1/n

* “Compressing” a value down with one h
loses too much information, so we use k
independent hash functions hy, h,, ..., h,

Bloom filter

Initialization

* Set all n bits to 0

Add xto S

* Compute hy(x), hy(x), ..., h(x)

* Set the corresponding k bits to 1

Check if xisin S

* Compute hy(x), hy(x), ..., h(x)

* Return true iff the corresp. k bits are all 1

No false negatives

If xisreallyin S

* Then by construction we have set bits
hi(x), hy(x), ..., hi(x) to 1

* So check will surely return true

False positive probability

If xisnotin S

* Check returns frue it each bit i1(x) is 1 due
to some other value(s) in S

* Plbitiis 1]
=1 - P[bit i was not set by k| S| hashes]
=1 — (1 _ 1/n)k|5|

* P[k particular bits are 1]
= (1= (1 =1/n)k'sIyk
~ (1 — e~ KISImyk

Example

» Suppose there are |S| =10° elements
» Suppose we have 1 GB (8x10” bits) memory

Itk=1

* P[false positive] = (1 —e*ISl/n)k=1 —¢-1/8
~(0.1175

Ifk=2

» P[false positive] = (1 —e~kISI/n)k = (1 — ¢ ~2/8)2
= (0.0493

Example

» Suppose there are |S| =10” elements
» Suppose we have 1 GB (8x10” bits) memory

As we increase the # of
bits to set to 1 per

element, it is more likely
that a bunch of bits
become 1 just by chance

8 14 16 18
I 1 Il l 1 Il J

k (# hash functions)

False positive prob.

Summary of Bloom filter

* Helps check membership in a large set
that cannot be stored entirely

* No false negatives
— Good for applications like URL shortener

* False negative probability can be tweaked
by the choice of n and k

21

Outline

How do we maintain a random sample of
size n for all data we’ve seen so far?

— Sample can be used to answer queries

How do we maintain a data structure to
check if a new arrival has appeared betore?
— E.g., a URL shortening service
How do we count the number of unique
records seen so far?
— E.g., # of unique visitors (by IP) to a website

Can you use a Bloom filter?

e Increment a counter whenever check
returns false for an incoming value

* Because of 0 false negative and non-0 false
positive probabilities, we will consistently
underestimate the # of distinct values

* Also, the Bloom filter does more than we
need —can we use the n bits more
efficiently?

FM (Flajolet-Martin) sketch

Let Taily(h(x)) = # of trailing consecutive 0’s
 Tail (101001) =0
* Tail(101010) =1
* Tail,(001100) =2
* Tail (101000) =3
* Tail,(000000) =6

FM sketch

Maintain a value K (max O-tail length)
Initialize K to O

For each new value
— Compute Tail,(h(x))
— Replace K with this value it is greater than K

F’=2Kis an estimate of F, the true number
of distinct elements

K require very little space to store

Rough intuition

If we have F distinct elements, we’d expect
* F/2 of them to have Tail(x) =0
* F/4 of them to have Tail (x) =1
 F/2! of them to have Tail,(x) =i

So F’=2Kis pretty good guess of F

How good is the result?

e [:the true number of distinct elements
* F”: guess by FM sketch

 We can show that for all ¢ > 3,
P[F/c<F <cF]>1-3/c

* But that’s not very accurate!

Use more sketches!

e Use the “median of means” trick

* Maintain a x b FM sketches
— Use independent hash functions!

* Compute the mean over each group of a
* Return the median of b means as answer

Summary of FM sketch

* Helps estimate # of distinct elements in a
large set that cannot be stored entirely

* Each FM sketch is very rough, but groups
of them improve estimation

* Trick question: do FM sketches support
membership check like Bloom filter?
— No—too much error on any particular check

— Specialization gives us better efficiency

29

Summary

Tricks for big data covered in class
* Parallel processing (e.g., MapReduce)

* Approximate processing
— Sampling (downsize data)
— Stream processing (linear time, limited space)

Straight Ahead I I

Image: http://bigdatapix.tumblr.com/

