Lab #6: Tweaking Classifiers

Everything Data CompSci 216 Spring 2015

Announcements (Mon. Feb. 23)

- Project team formation due tonight!
 - Submit team.txt to proj-team
 - Don't confuse it with submitting team.txt for this lab
- Same team assignment as last lab
 - Seating by project team assignment will begin next week
- Sample solution to Homework #6 posted
- Jun is moving office hours to Fridays 3:30-4:45pm in LSRC D327

Winners from Lab #5

Team 9:

- Anthony Hagouel
- Dianwen Li
- Janvi Shah
- Alexander Shih

Format of this lab

- Introduction
- Two challenges
- Discussion

Introducing Lab #7

So you are not happy with your classifier (or any prediction algorithm in general); what can you do?

- Try a different algorithm?
- Try different parameters of the algorithm?
- Get more training examples?
- Try fewer features?
- *Try more features?*

Team challenge 1

- In Homework #6, we used hundreds of votes as features to predict party affiliation
- It turned out that 10 arbitrary votes were enough!
- But would any 10 work? Can you find 10 bad features to screw up Naïve Bayes?

5% extra credit if you get <70% accuracy First to achieve the lowest accuracy wins!

Feature selection

Why?

• Faster, less prone to overfitting, easier to interpret model

How?

- One simple approach: rank all features by some utility measure, and use only the top k
 - A popular utility measure is χ^2
 - A high χ^2 means it's unlikely that the feature value and the class label are independent
- When does this fail?

Tweaking classifiers: Scenario 1

If you increase # training examples and see

- Test error continues to decrease
- Gap between test and training errors remains big

From Andrew Ng: http://see.stanford.edu/materials/aimlcs229/ML-advice.pdf

Tweaking classifiers: Scenario 2

But if

- Even training error is unacceptably high
- Gap between test and training error is narrow

From Andrew Ng: http://see.stanford.edu/materials/aimlcs229/ML-advice.pdf

Tuning algorithm parameters

- Systematic search of parameter space
 - You don't get to see test data, yet
 - Use cross-validation on training data
- Understanding of how algorithms (and parameters) work will help
 - E.g., if you observe overfitting, try increasing *k* in the *k*NN classifier

Intuition behind linear SVM

- Points labeled with two classes
- Find a hyperplane separating the two classes

But which one would you pick?

Max-margin classifier

- Pick the hyperplane with the widest margin
 - Turns out this problem can be solved efficiently

Not linearly separable?

Transform data to make it separable, e.g.:

Instead of really transforming data, pick a distance metric (kernel), and the "kernel trick" will keep SVM efficient!

- In other cases, you can make the SVM "soft"
 - Allow misclassified points but pay a penalty

Team challenge 2

- Classify articles into 6 newsgroups
- Naïve Bayes vs. kNN vs. SVM
- Various tweaking can be done by modifying lab.py and supplying additional command-line arguments

5% extra credit if you get >0.79 F-measure First to achieve the highest accuracy wins!

Lessons learned

- Getting started should be easy; getting really good results is hard
- So many tools and knobs, so little time!

- Automatic searches through feature and

parameter spaces can help

Better understanding of the tools/knobs helps

- "Careful design" vs. "build-and-fix"
 - Andrew Ng

Image: http://drno-effects.com/products/black-magic/

Finally

- Remember to submit lab team.txt under lab06 by midnight
- And also project team.txt under proj-team
- Slides on and sample solutions to Lab #6 will be posted by tonight