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A mathematician is a master of critical thinking, of analysis, and of deduc-
tive reasoning. These skills travel well, and can be applied in a large variety
of situations—and in many different disciplines. Today, mathematical skills
are being put to good use in medicine, physics, law, commerce, Internet de-
sign, engineering, chemistry, biological science, social science, anthropology,
genetics, warfare, cryptography, plastic surgery, security analysis, data ma-
nipulation, computer science, and in many other disciplines and endeavors
as well.

The unique feature that sets mathematics apart from other sciences, from
philosophy, and indeed from all other forms of intellectual discourse, is the
use of rigorous proof. It is the proof concept that makes the subject cohere,
that gives it its timelessness, and that enables it to travel well. The purpose
of this discussion is to describe proof, to put it in context, to give its history,
and to explain its significance.

There is no other scientific or analytical discipline that uses proof as
readily and routinely as does mathematics. This is the device that makes
theoretical mathematics special: the tightly knit chain of reasoning, following
strict logical rules, that leads inexorably to a particular conclusion. It is
proof that is our device for establishing the absolute and irrevocable truth
of statements in our subject. This is the reason that we can depend on
mathematics that was done by Euclid 2300 years ago as readily as we believe
in the mathematics that is done today. No other discipline can make such
an assertion.

Tt is a pleasure to thank the American Institute of Mathematics for its hospitality and
support during the writing of this paper.



Figure 1: Mathematical constructions from surveying.

1 The Concept of Proof

The tradition of mathematics is a long and glorious one. Along with philoso-
phy, it is the oldest venue of human intellectual inquiry. It is in the nature of
the human condition to want to understand the world around us, and math-
ematics is a natural vehicle for doing so. Mathematics is also a subject that
is beautiful and worthwhile in its own right. A scholarly pursuit that had
intrinsic merit and aesthetic appeal, mathematics is certainly worth studying
for its own sake.

In its earliest days, mathematics was often bound up with practical ques-
tions. The Egyptians, as well as the Greeks, were concerned with surveying
land. Refer to Figure 1. Thus it was natural to consider questions of ge-
ometry and trigonometry. Certainly triangles and rectangles came up in a
natural way in this context, so early geometry concentrated on these con-
structs. Circles, too, were natural to consider—for the design of arenas and
water tanks and other practical projects. So ancient geometry (and Euclid’s
axioms for geometry) discussed circles.

The earliest mathematics was phenomenological. If one could draw a



B

Figure 2: Logical derivation.

plausible picture, or give a compelling description, then that was all the
justification that was needed for a mathematical “fact”. Sometimes one
argued by analogy. Or by invoking the gods. The notion that mathematical
statements could be proved was not yet an idea that had been developed.
There was no standard for the concept of proof. The logical structure, the
“rules of the game”, had not yet been created.

Thus we are led to ask: What is a proof? Heuristically, a proof is a
rhetorical device for convincing someone else that a mathematical statement
is true or valid. And how might one do this? A moment’s thought suggests
that a natural way to prove that something new (call it B) is true is to relate
it to something old (call it A) that has already been accepted as true. Thus
arises the concept of deriving a new result from an old result. See Figure 2.
The next question then is, “How was the old result verified?” Applying this
regimen repeatedly, we find ourselves considering a chain of reasoning as in
Figure 3. But then one cannot help but ask: “Where does the chain begin?”
And this is a fundamental issue.

It will not do to say that the chain has no beginning: it extends infinitely
far back into the fogs of time. Because if that were the case it would undercut



Figure 3: A chain of reasoning.

our thinking of what a proof should be. We are endeavoring to justify new
mathematical facts in terms of old mathematical facts. But if the reasoning
regresses infinitely far back into the past, then we cannot in fact ever grasp
a basis or initial justification for our reasoning. As we shall see below, the
answer to these questions is that the mathematician puts into place defini-
tions and axioms before beginning to explore the firmament, determine what
is true, and then to prove it. Considerable discussion will be required to put
this paradigm into context.

As a result of these questions, ancient mathematicians had to think hard
about the nature of mathematical proof. Thales (640 B.C.E.-546 B.C.E.),
Eudoxus (408 B.C.E.-355 B.C.E.), and Theaetetus of Athens (417 B.C.E.—
369 B.C.E.) actually formulated theorems. Thales definitely proved some
theorems in geometry (and these were later put into a broader context by
Euclid). A theorem is the mathematician’s formal enunciation of a fact
or truth. But Eudoxus fell short in finding means to prove his theorems.
His work had a distinctly practical bent, and he was particularly fond of
calculations.

It was Euclid of Alexandria who first formalized the way that we now



think about mathematics. Fuclid had definitions and axioms and then
theorems—in that order. There is no gainsaying the assertion that Euclid
set the paradigm by which we have been practicing mathematics for 2300
years. This was mathematics done right. Now, following Fuclid, in order to
address the issue of the infinitely regressing chain of reasoning, we begin our
studies by putting into place a set of Definitions and a set of Axioms.

What is a definition? A definition explains the meaning of a piece of
terminology. There are logical problems with even this simple idea, for con-
sider the first definition that we are going to formulate. Suppose that we
wish to define a rectangle. This will be the first piece of terminology in our
mathematical system. What words can we use to define it? Suppose that
we define rectangle in terms of points and lines and planes and right angles.
That begs the questions: What is a point? What is a line? What is a plane?
How do we define “angle”? What is a right angle?

Thus we see that our first definition(s) must be formulated in terms of
commonly accepted words that require no further explanation. It was Aris-
totle (384 B.C.E.-322 B.C.E.) who insisted that a definition must describe
the concept being defined in terms of other concepts already known. This
is often quite difficult. As an example, Euclid defined a point to be that
which has no part. Thus he is using words outside of mathematics, that are
a commonly accepted part of everyday argot, to explain the precise mathe-
matical notion of “point”.?2 Once “point” is defined, then one can use that
term in later definitions—for example, to define “line”. And one will also use
everyday language that does not require further explication. That is how we
build up our system of definitions.

The definitions give us then a language for doing mathematics. We formu-
late our results, or theorems, by using the words that have been established
in the definitions. But wait, we are not yet ready for theorems. Because we
have to lay cornerstones upon which our reasoning can develop. That is the
purpose of axioms.

What is an axiom? An axiom?

(or postulate?) is a mathematical state-

2Tt is quite common, among those who study the foundations of mathematics, to refer
to terms that are defined in non-mathematical language—that is, which cannot be defined
in terms of other mathematical terms—as undefined terms. The concept of “point” is an
undefined term.

3The word “axiom” derives from the Greek azios, meaning “something worthy”.

4The word “postulate” derives from a medieval Latin word postulatus meaning “to
nominate” or “to demand”.



ment of fact, formulated using the terminology that has been defined in the
definitions, that is taken to be self-evident. An axiom embodies a crisp, clean
mathematical assertion. One does not prove an axiom. One takes the axiom
to be given, and to be so obvious and plausible that no proof is required.

Generally speaking, in any subject area of mathematics, one begins with
a brief list of definitions and a brief list of axioms. Once these are in place,
and are accepted and understood, then one can begin proving theorems.?
And what is a proof? A proof is a rhetorical device for convincing another
mathematician that a given statement (the theorem) is true. Thus a proof
can take many different forms. The most traditional form of mathematical
proof is that it is a tightly knit sequence of statements linked together by
strict rules of logic. But the purpose of the present article is to discuss and
consider the various forms that a proof might take. Today, a proof could
(and often does) take the traditional form that goes back 2300 years to the
time of Euclid. But it could also consist of a computer calculation. Or
it could consist of constructing a physical model. Or it could consist of a
computer simulation or model. Or it could consist of a computer algebra
computation using Mathematica or Maple or MatLab. It could also consist
of an agglomeration of these various techniques.

2 What Does a Proof Consist Of?

Most of the steps of a mathematical proof are applications of the elementary
rules of logic. This is a slight oversimplification, as there are a great many
proof techniques that have been developed over the past two centuries. These
include proof by mathematical induction, proof by contradiction, proof by
exhaustion, proof by enumeration, and many others. But they are all built
on one simple rule: modus ponendo ponens. This rule of logic says that if
we know that “A implies B”, and if we know “A”, then we may conclude
B. Thus a proof is a sequence of steps linked together by modus ponendo
ponens.’

It is really an elegant and powerful system. Occam’s Razor is a logi-

5The word “theorem” derives from the Greek theorein, meaning “to look at.”

50ne of the most important proof techniques in mathematics is “proof by contradic-
tion”. With this methodology, one assumes in advance that the desired result is false
and shows that that leads to an untenable position. But in fact proof by contradiction is
nothing other than a reformulation of modus ponendo ponens.



cal principle posited in the fourteenth century (by William of Occam (1288
C.E.—1348 C.E.)) which advocates that your proof system should have the
smallest possible set of axioms and logical rules. That way you minimize
the possibility that there are internal contradictions built into the system,
and also you make it easier to find the source of your ideas. Inspired both
by Euclid’s Elements and by Occam’s Razor, mathematics has striven for
all of modern time to keep the fundamentals of its subject as streamlined
and elegant as possible. We want our list of definitions to be as short as
possible, and we want our collection of axioms or postulates to be as concise
and elegant as possible. If you open up a classic text on group theory—such
as Marshall Hall’s masterpiece [HAL|, you will find that there are just three
axioms on the first page. The entire 434-page book is built on just those
three axioms.” Or instead have a look at Walter Rudin’s classic Principles of
Mathematical Analysis [RUD]. There the subject of real variables is built on
just twelve axioms. Or look at a foundational book on set theory like Suppes
[SUP] or Hrbacek and Jech [HRJ]. There we see the entire subject built on
eight axioms.

3 The Purpose of Proof

The experimental sciences (physics, biology, chemistry, for example) tend
to use laboratory experiments or tests to check and verify assertions. The
benchmark in these subjects is the reproducible experiment with control. In
their published papers, these scientists will briefly describe what they have
discovered, and how they carried out the steps of the corresponding exper-
iment. They will describe the control, which is the standard against which
the experimental results are compared. Those scientists who are interested
can, on reading the article, then turn around and replicate the experiment in
their own labs. The really classic, and fundamental and important, experi-
ments become classroom material and are reproduced by students all over the
world. Most experimental science is not derived from fundamental principles
(like axioms). The intellectual process is more empirical, and the verification
procedure is correspondingly practical and direct.

Mathematics is quite a different sort of intellectual enterprise. In mathe-

"In fact there has recently been found a way to enunciate the premises of group theory
using just one axiom, and not using the word “and”. References for this work are [KUN],
[HIN], and [MCC].



matics we set our definitions and axioms in place before we do anything else.
In particular, before we endeavor to derive any results we must engage in a
certain amount of preparatory work. Then we give precise, elegant formula-
tions of statements and we prove them. Any statement in mathematics which
lacks a proof has no currency. Nobody will take it as valid. And nobody will
use it in his/her own work. The proof is the final test of any new idea. And,
once a proof is in place, that is the end of the discussion. Nobody will ever
find a counterexample, nor ever gainsay that particular mathematical fact.

Another special feature of mathematics is its timelessness. The theorems
that Euclid and Pythagoras proved 2500 years ago are still valid today; and
we use them with confidence because we know that they are just as true
today as they were when those great masters first discovered them. Other
sciences are quite different. The medical or computer science literature of
even three years ago is considered to be virtually useless. Because what
people thought was correct a few years ago has already changed and migrated
and transmogrified. Mathematics, by contrast, is here forever.

What is marvelous is that, in spite of the appearance of some artificiality
in the mathematical process, mathematics provides beautiful models for na-
ture (see the lovely essay [WIG], which discusses this point). Over and over
again, and more with each passing year, mathematics has helped to explain
how the world around us works. Just a few examples illustrate the point:

e [saac Newton derived Kepler’s three laws of planetary motion from just
his universal law of gravitation and calculus.

e There is a complete mathematical theory of the refraction of light (due
to Isaac Newton, Willebrord Snell, and Pierre de Fermat).

e There is a mathematical theory of the propagation of heat.
e There is a mathematical theory of electromagnetic waves.

e All of classical field theory from physics is formulated in terms of math-
ematics.

e Einstein’s field equations are analyzed using mathematics.

e The motion of falling bodies and projectiles is completely analyzable
with mathematics.



e The technology for locating distant submarines using radar and sonar
waves is all founded in mathematics.

e The theory of image processing and image compression is all founded
in mathematics.

e The design of music CDs is all based on Fourier analysis and coding
theory, both branches of mathematics.

The list could go on and on.

The key point to be understood here is that proof is central to what
modern mathematics is about, and what makes it reliable and reproducible.
No other science depends on proof, and therefore no other science has the
bulletproof solidity of mathematics. But mathematics is applied in a variety
of ways, in a vast panorama of disciplines. And the applications are many and
varied. Other disciplines often like to reduce their theories to mathematics—
or at least explain them in mathematical terms—because it gives the subject
a certain elegance and solidity. And it looks really sophisticated. Such efforts
meet with varying success.

4 The History of Mathematical Proof

In point of fact the history of the proof concept is rather inchoate. It is
unclear just when mathematicians and philosophers conceived of the notion
that mathematical assertions required justification. This was quite a new
idea. Then it was another considerable leap to devise methods for construct-
ing such a justification. In the present section we shall outline what little is
known about the development of the proof concept.

Perhaps the first mathematical “proof” in recorded history is due to the
Babylonians. They seem (along with the Chinese) to have been aware of the
Pythagorean theorem (discussed in detail below) well before Pythagoras.®
The Babylonians had certain diagrams that indicate why the Pythagorean
theorem is true, and tablets have been found to validate this fact.? They also

8 Although it must be stressed that they did not have Pythagoras’s sense of the structure
of mathematics, of the importance of rigor, or of the nature of formal proof.

9We stress that the Babylonian effort was not a proof by modern standards. But it
was at least an effort to provide logical justification for a mathematical fact.



had methods for calculating Pythagorean triples—that is, triples of integers
(or whole numbers) a, b, ¢ that satisfy

a’ +b*=¢?

as in the Pythagorean theorem.

4.1 Pythagoras

Pythagoras (569-500 B.C.E.) was both a person and a society (i.e., the
Pythagoreans). He was also a political figure and a mystic. He was spe-
cial in his time, among other reasons, because he involved women as equals
in his activities. One critic characterized the man as “one tenth of him ge-
nius, nine-tenths sheer fudge.” Pythagoras died, according to legend, in the
flames of his own school fired by political and religious bigots who stirred up
the masses to protest against the enlightenment which Pythagoras sought to
bring them.

The Pythagoreans embodied a passionate spirit that is remarkable to our
eyes:

Bless us, divine Number, thou who generatest gods and men.
and
Number rules the universe.

Note that Pythagoras lived before Euclid. Thus his contributions should
be thought of as feeding into Euclid’s seminal creation. The Pythagoreans
are remembered for two monumental contributions to mathematics. The
first of these was establishing the importance of, and the necessity for, proofs
in mathematics: that mathematical statements, especially geometric state-
ments, must be verified by way of rigorous proof. Prior to Pythagoras, the
ideas of geometry were generally rules of thumb that were derived empiri-
cally, merely from observation and (occasionally) measurement. Pythagoras
also introduced the idea that a great body of mathematics (such as geome-
try) could be derived from a small number of postulates. The second great
contribution was the discovery of, and proof of, the fact that not all numbers
are commensurate. More precisely, the Greeks prior to Pythagoras believed
with a profound and deeply held passion that everything was built on the
whole numbers. Fractions arise in a concrete manner: as ratios of the sides of

10
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Figure 4: The fraction —.
a

triangles with integer length (and are thus commensurable—this antiquated
terminology has today been replaced by the word “rational”)—see Figure 4.

Pythagoras proved the result that we now call the Pythagorean theorem.
It says that the legs a,b and hypotenuse ¢ of a right triangle (Figure 5) are
related by the formula

a’+b*=c*. (%)

This theorem has perhaps more proofs than any other result in mathematics—
well over fifty altogether. And in fact it is one of the most ancient math-
ematical results. There is evidence that the Babylonians and the Chinese
knew this theorem at least 500 years before Pythagoras.

Now Pythagoras noticed that, if a = 1 and b = 1, then ¢ = 2. He won-
dered whether there was a rational number ¢ that satisfied this last identity.
His stunning conclusion was this:

Theorem: There is no rational number ¢ such that ¢ = 2.

Put in other words, if there is a number whose square is two then that
number cannot be rational. This result caused considerable upset and con-
fusion in Greek philosophical circles. It had been a rigidly held belief that

11
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Figure 5: The Pythagorean theorem.

all numbers—at least numbers that one encountered in real life—were ra-
tional. Now it was found that there were other numbers (the irrationals)
that must be dealt with. It would take two thousand years for scholars to
fully understand and incorporate these new ideas into the infrastructure of
mathematics.

4.2 Eudoxus and the Concept of Theorem

It was Eudoxus (408 B.C.E-355 B.C.E.) who began the grand tradition of
organizing mathematics into theorems. Eudoxus was one of the first to use
the word “theorem” in the context of mathematics.

In fact Eudoxus was a man of many interests and many talents. He knew
a good deal about astronomy and number theory. He developed the theory
of proportions, and built on the ideas of Pythagoras to devise methods to
compare irrational numbers. This in turn enabled him to develop his method
of exhaustion, which is a precursor of the modern integration theory (part of
calculus) that is used to calculate areas and volumes.

What Eudoxus gained in the rigor and precision of his mathematical for-
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mulations, he lost because he did not prove anything. Formal proof was not
yet the tradition in mathematics. As we have noted elsewhere, mathematics
in its early days was a largely heuristic and empirical subject. It had never
occurred to anyone that there was any need to prove anything.

4.3 FEuclid the Geometer

Euclid (325 B.C.E.—265 B.C.E.) is hailed as the first scholar to systematically
organize mathematics (i.e., a substantial portion of the mathematics that
went before him), formulate definitions and axioms, and prove theorems.
This was a monumental achievement, and a highly original one.

Although Euclid is not known so much (as were Archimedes and Pythago-
ras) for his original and profound mathematical insights, and although there
are not many theorems named after Euclid,!® he has had an incisive effect
on human thought. After all, Euclid wrote a treatise (consisting of thir-
teen Books)—mow known as Euclid’s Elements—which has been continuously
available for over 2000 years and has been through a large number of edi-
tions. It is still studied in detail today, and continues to have a substantial
influence over the way that we think about mathematics.

As often happens with scientists and artists and scholars of immense
accomplishment, there is disagreement, and some debate, over exactly who
or what Euclid actually was. The three schools of thought are these:

e Euclid was an historical character—a single individual—who in fact
wrote the Flements and the other scholarly works that are commonly
attributed to him.

e Fuclid was the leader of a team of mathematicians working in Alexan-
dria. They all contributed to the creation of the complete works that we
now attribute to Euclid. They even continued to write and disseminate
books under Euclid’s name after his death.

e Euclid was not an historical character at all. In fact “Euclid” was a nom
de plume adopted by a group of mathematicians working in Alexandria.
They took their inspiration from Euclid of Megara (who was in fact an
historical figure), a prominent philosopher who lived about 100 years
before Euclid the mathematician is thought to have lived.

10But we must note that the Euclidean algorithm and the proof that there are infinitely
many prime integers are original creations of Euclid, and are of fundamental importance.
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Most scholars today subscribe to the first theory—that Euclid was cer-
tainly a unique person who created the Flements. But we acknowledge that
there is evidence for the other two scenarios. Certainly Euclid had a vigor-
ous school of mathematics in Alexandria, and there is little doubt that his
students participated in his projects.

It is thought that Euclid must have studied in Plato’s (430 B.C.E.-349
B.C.E.) Academy in Athens, for it is unlikely that there would have been
another place where he could have learned the geometry of Eudoxus and
Theaetetus on which the Elements is based.

What is important about Euclid’s Elements is the paradigm it provides
for the way that mathematics should be studied and recorded. He begins
with several definitions of terminology and ideas for geometry, and then he
records five important postulates (or axioms) of geometry. A version of these
postulates is as follows:

P1 Through any pair of distinct points there passes a line.

P2 For each segment AB and each segment C'D there is a unique point F
(on the line determined by A and B) such that B is between A and E
and the segment CD is congruent to BE (Figure 6).

P3 For each point C' and each point A distinct from C' there exists a circle
with center C' and radius C'A.

P4 All right angles are congruent.

These are the standard four axioms which give our Euclidean concep-
tion of geometry. The fifth axiom, a topic of intense study for two
thousand years, is the so-called parallel postulate (in Playfair’s formu-
lation):

P5 For each line ¢ and each point P that does not lie on ¢ there is a unique
line ¢ through P such that ¢ is parallel to ¢ (Figure 7).

The fifth axioim, P5, has a fascinating history. For two thousand years
people suspected that it was not independent of the other axioms—that in
fact it could be derived from P1-P4. There were mighty struggles to provide
such a derivation, and many famous mistakes made (see [GRE] for some of
the history). But, in 1826, Janos Bolyai and Nikolai Lobachevsky showed
independently that the Parallel Postulate can never be proved. There are
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Figure 6: FEuclid’s Axiom P2.

Figure 7: Euclid’s Axiom P5: The Parallel Postulate.
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models for geometry in which all the other axioms of Euclid are true yet the
Parallel Postulate is false. So the Parallel Postulate now stands as one of the
axioms of our most commonly used geometry.

Of course, prior to this enunciation of his celebrated five axioms, Eu-
clid had defined “point”, “line”, “circle”, and the other terms that he uses.
Although Euclid borrowed freely from mathematicians both earlier and con-
temporaneous with himself, it is generally believed that the famous “Parallel
Postulate”, that is Postulate P5, is of Euclid’s own creation.

5 The Middle Ages

The Middle Ages were also called the Dark Ages, and not without good
reason. This was a long period (over 1000 years by some measures) of intel-
lectual stagnation. True, the Arabs developed some of their seminal ideas in
algebra during this time. Some other cultures, including the Africans and the
Incas and the Chinese, made some mathematical progress during this period
(from about 500 C.E. to 1500 C.E.). But very little was done to develop the
idea of mathematical proof. This is a very sophisticated concept—one of the
pinnacles of human thought. And it awaited a fertile time in Europe to see
the next major steps in the development.

6 The Golden Age of the Nineteenth Century

Nineteenth-century Europe was a haven for brilliant mathematics. So many
of the important ideas in mathematics today grew out of ideas that were
developed at that time. We list just a few of these:

e Jean Baptiste Joseph Fourier (1768-1830) developed the seminal ideas
for Fourier series and created the first formula for the expansion of an
arbitrary function into a trigonometric series. He developed applica-
tions to the theory of heat.

e Evariste Galois (1812-1832) and Augustin Louis-Cauchy (1789-1857)
laid the foundations for abstract algebra by inventing group theory.

e Bernhard Riemann (1826-1866) established the subject of differential
geometry, defined the version of the integral (from calculus) that we

16



use today, and made profound contributions to complex variable theory
and Fourier analysis.

e Augustin-Louis Cauchy laid the foundations of complex variable the-
ory and partial differential equations. He also did seminal work in
geometric analysis.

e Carl Jacobi (1804-1851), Ernst Kummer (1810-1893), Niels Henrick
Abel (1802-1829), and numerous other mathematicians from many
countries developed number theory.

e Joseph Louis Lagrange (1736-1813), Cauchy and others were laying
the foundations of the calculus of variations, classical mechanics, the
implicit function theorem, and many other important ideas in modern
geometric analysis.

e Karl Weierstrass (1815-1897) laid the foundations for rigorous analysis
with numerous examples and theorems. He made seminal contributions
both to real and to complex analysis.

This list could be expanded considerably. The nineteenth century was a
fecund time for European mathematics, and communication among mathe-
maticians was at an all-time high. There were several prominent mathematics
journals, and important work was widely disseminated. The many great uni-
versities in Italy, France, Germany, and England (England’s was driven by
physics) had vigorous mathematics programs and many students. This was
an age when the foundations for modern mathematics were laid.

And certainly the seeds of rigorous discourse were being sown at this time.
The language and terminology and notation of mathematics was not quite
yet universal, the definitions were not well established, and even the methods
of proof were in development. But the basic methodology was in place and
the mathematics of that time traveled reasonably well among countries and
to the twentieth century and beyond. As we shall see below, Bourbaki and
Hilbert set the tone for rigorous mathematics in the twentieth century. But
the work of the many nineteenth-century geniuses paved the way for those
pioneers.
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7 Hilbert and the Twentieth Century

Along with Henri Poincaré (1854-1912) of France, David Hilbert (1862-1943)
of Germany was the spokesman for early twentieth century mathematics.
Hilbert is said to have been one of the last mathematicians to be conversant
with the entire subject—from differential equations to geometry to logic to
algebra. He exerted considerable influence over all parts of mathematics,
and he wrote seminal texts in many of them. Hilbert had an important
and profound vision for the rigorization of mathematics (one that was later
dashed by work of Bertrand Russell, Kurt Gédel, and others), and he set the
tone for the way that mathematics was to be practiced and recorded in our
time.

Hilbert had many important students, ranging from Richard Courant
(1888-1972) to Theodore von Kérman (1881-1963) (the father of modern
aeronautical engineering) to Hugo Steinhaus (1887-1972) to Hermann Weyl
(1885-1955). His influence was felt widely, not just in Germany but around
the world. He certainly helped to establish Gottingen as one of the world
centers for mathematics, and it continues to be so today.

One of Hilbert’s real coups was to study the subject of algebraic invariants
and to prove that there was a basis for these invariants. For several decades
people had sought to prove this result by constructive means—by actually
writing down the basis.!’ Hilbert established the result nonconstructively,
essentially with a proof by contradiction. This was quite controversial at the
time—even though proof by contradiction had been around at least since
the time of Euclid. Hilbert’s work put a great many mathematicians out
of business, and established him rather quickly as a force to be reckoned
with. Certainly Hilbert is remembered today for a great many mathematical
innovations, one of which was his Nullstellensatz—one of the key algebraic
tools that he developed for the study of invariants.

Certainly David Hilbert was considered to be one of the premiere in-
tellectual leaders of European mathematics. Just as an indication of his
pre-eminence, he was asked to give the keynote address at the second Inter-
national Congress of Mathematicians that was held in Paris in 1900. What
Hilbert did at that meeting was earthshaking—from a mathematical point
of view. He formulated twenty-three problems that he thought should serve
as beacons in the mathematical work of the twentieth century. On the ad-

LA “basis” is a minimal generating set for an algebraic system.
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vice of Hurwitz and Minkowski, Hilbert abbreviated his remarks and only
presented ten of these problems in his lecture. But soon thereafter a more
complete version of Hilbert’s ideas was published in several countries. For
example, in 1902 the Bulletin of the American Mathematical Society pub-
lished an authorized translation by Mary Winston Newson'? (1869-1959).
This version described all twenty-three of the unsolved mathematics prob-
lems that Hilbert considered to be of the first rank, and for which it was of
the greatest importance to find a solution.

Of course Hilbert’s name carried considerable clout, and the mathemati-
cians in attendance paid careful attention to the great savant’s admonitions.
They took the problems home with them and in turn disseminated them to
their peers and colleagues. We have noted that Hilbert’s remarks were writ-
ten up and published, and thereby found their way to universities all over
the world. It rapidly became a matter of great interest to solve a Hilbert
problem, and considerable praise and encomia were showered on anyone who
did so. Today most of the Hilbert problems are solved, but there are a few
particularly thorny ones that remain. The references [GRA] and [YAN] give a
detailed historical accounting of the colorful history of the Hilbert problems.

One of Hilbert’s overriding passions was logic, and he wrote an important
treatise in the subject [HIA]. Since Hilbert had a universal and comprehensive
knowledge of mathematics, he thought carefully about how the different parts
of the subject fit together. And he worried about the axiomatization of
the subject. Hilbert believed fervently that there ought to be a universal
(and rather small) set of axioms for mathematics, and that all mathematical
theorems should be derivable from those axioms.'® But Hilbert was also
fully cognizant of the rather uneven history of mathematics. He knew all too
well that much of the literature was riddled with errors and inaccuracies and
inconsistencies.

12Newson was the first American woman to earn the Ph.D. degree at the university in
Gottingen.

13We now know, thanks to work of Kurt Goédel, that in fact Hilbert’s dream cannot
be fulfilled. At least not in the literal sense. But it is safe to say that most working
mathematicians take Hilbert’s program seriously, and most of us approach our subject
with this ideal in mind.
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Figure 8: The closed unit disc.

7.1 L. E. J. Brouwer and Proof by Contradiction

L. E. J. Brouwer (1881-1966) was a bright young Dutch mathematician whose
chief interest was in topology. Now topology was quite a new subject in those
days (the early twentieth century). Affectionately dubbed “rubber sheet
geometry”, the subject concerns itself with geometric properties of surfaces
and spaces that are preserved under continuous deformation (i.e., twisting
and bending and stretching). In his studies of this burgeoning new subject,
Brouwer came up with a daring new result, and he found a way to prove it.

Known as the “Brouwer Fixed-Point Theorem”, the result can be de-
scribed as follows. Consider the closed unit disc D in the plane, as depicted
in Figure 8. This is a round, circular disc—including the boundary circle as
shown in the picture. Now imagine a function ¢ : D — D that maps this
disc continuously to itself, as shown in Figure 9. Brouwer’s result is that the
mapping ¢ must have a fixed point. That is to say, there is a point P € D
such that ¢(P) = P. See Figure 10.

This is a technical mathematical result, and its rigorous proof uses pro-
found ideas such as homotopy theory. But, serendipitously, it lends itself
rather naturally to some nice heuristic explanations. Here is one popular
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Figure 9: A continuous map from the disc to the disc.

Figure 10: A fixed point of the mapping.
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Figure 11: Eating a bowl of soup.

interpretation. Imagine that you are eating a bowl of soup—Figure 11. You
sprinkle grated cheese uniformly over the surface of the soup (see Figure 12).
And then you stir up the soup. We assume that you stir the soup in a civi-
lized manner so that all the cheese remains on the surface of the soup (refer
to Figure 13). Then some grain of cheese remains in its original position
(Figure 14).

The soup analogy gives a visceral way to think about the Brouwer fixed-
point theorem. Both the statement and the proof of this theorem—in the
year 1909—were quite dramatic. In fact it is now known that the Brouwer
fixed-point theorem is true in every dimension (Brouwer himself proved it
only in dimension 2).

The Brouwer fixed-point theorem is one of the most fascinating and im-
portant theorems of twentieth-century mathematics. Proving this theorem
established Brouwer as one of the pre-eminent topologists of his day. But he
refused to lecture on the subject, and in fact he ultimately rejected this (his
own!) work. The reason for this strange behavior is that L. E. J. Brouwer
had become a convert to constructivism or intuitionism. He rejected the
Aristotelian dialectic (that a statement is either true or false and there is no
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Figure 12: Distributing cheese uniformly over the soup.
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Figure 13: Stirring the soup while keeping the cheese on the surface.
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Figure 14: One grain of cheese remains in its original position.

alternative), and therefore rejected the concept of “proof by contradiction”.
Brouwer had come to believe that the only valid proofs—at least when one
is proving ezistence of some mathematical object (like a fixed point!) and
when infinite sets are involved—are those in which we construct the asserted
objects being discussed.!* Brouwer’s school of thought became known as
“intuitionism”, and it has made a definite mark on twentieth century math-
ematics.

7.2 FErrett Bishop and Constructive Analysis

Errett Bishop was one of the great geniuses of mathematical analysis in the
1950s and 1960s. He made his reputation by devising devilishly clever proofs
about the structure of spaces of functions. Many of his proofs were indirect
proofs—that is to say, proofs by contradiction.

Bishop underwent some personal changes in the mid- to late-1960s. He
was a Professor of Mathematics at U. C. Berkeley and he was considerably
troubled by all the political unrest on campus. After a time, he felt that he
could no longer work in that atmosphere. So he arranged to transfer to U. C.
San Diego. At roughly the same time, Bishop became convinced that proofs
by contradiction were fraught with peril. He wrote a remarkable and rather
poignant book [BIS] which touts the philosophy of constructivism—similar

14]n fact, for the constructivists, the phrase “there exists” must take on a rigorous new
meaning that exceeds the usual rules of formal logic.
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in spirit to L. E. J. Brouwer’s ideas from fifty years before. Unlike Brouwer,
Bishop really put his money where his mouth was. In the pages of his book,
Bishop is able to actually develop most of the key ideas of mathematical
analysis without resort to proofs by contradiction. Thus he created a new
field of mathematics called “constructive analysis”.

A quotation from Bishop’s Preface to his book gives an indication of how
that author himself viewed what he was doing:

Most mathematicians would find it hard to believe that there
could be any serious controversy about the foundations of math-
ematics, any controversy whose outcome could significantly affect
their own mathematical activity.

In a perhaps more puckish mood, Bishop elaborates:

Mathematics belongs to man, not to God. We are not inter-
ested in properties of the positive integers that have no descriptive
meaning for finite man. When a man proves a positive integer to
exist, he should show how to find it. If God has mathematics of
His own that needs to be done, let Him do it Himself.

But our favorite Errett Bishop quotation, and the one that bears most
closely on the theme of this article, is

A proof is any completely convincing argument.

Bishop’s arguments in Methods of Constructive Analysis [BIS] were, as
was characteristic of Bishop, devilishly clever. The book had a definite im-
pact, and certainly caused people to reconsider the methodology of modern
analysis. Bishop’s acolyte and collaborator D. Bridges produced the revised
and expanded version [BIB] of his work (published after Bishop’s death), and
there the ideas of constructivism are carried even further.

7.3 Nicolas Bourbaki

There had long been a friendly rivalry between French mathematics and
German mathematics. Although united by a common subject that everyone
loved, and by a shared geographical border, these two ethnic groups prac-
ticed mathematics with different styles and different emphases and different
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priorities. The French certainly took David Hilbert’s program for mathemat-
ical rigor very seriously, but it was in their nature then to endeavor to create
their own home-grown program. This project was ultimately initiated and
carried out by a remarkable figure in the history of modern mathematics.
His name was Nicolas Bourbaki.

Jean Dieudonné, the great raconteur of twentieth-century French mathe-
matics, tells of a custom at the Ecole Normale Supérieure in France to subject
first-year students in mathematics to a rather bizarre rite of initiation. A
senior student at the university would be disguised as an important visitor
from abroad; he would give an elaborate and rather pompous lecture in which
several “well-known” theorems were cited and proved. Each of the theorems
would bear the name of a famous or sometimes not-so-famous French gen-
eral, and each was wrong in some very subtle and clever way. The object of
this farce was for the first-year students to endeavor to spot the error in each
theorem, or perhaps not to spot the error but to provide some comic relief.

In the mid-1930’s, a cabal of French mathematicians—ones who were
trained at the notorious Ecole Normale Supérieure—was formed with the
purpose of writing definitive texts in the basic subject areas of mathemat-
ics. They ultimately decided to publish their books under the nom de plume
Nicolas Bourbaki. In fact the inspiration for their name was an obscure
French general named Charles Denis Sauter Bourbaki. This general, so it
is told, was once offered the chance to be King of Greece but (for unknown
reasons) he declined the honor. Later, after suffering an embarrassing re-
treat in the Franco-Prussian War, Bourbaki tried to shoot himself in the
head—but he missed. Certainly Bourbaki’s name had been used in the tom-
foolery at the Ecole Normale. Bourbaki was quite the buffoon. When the
young mathematicians André Weil (1906-1998), Jean Delsarte (1903-1968),
Jean Dieudonné (1906-1992), Lucien de Possel (1905-1974), Claude Cheval-
ley (1909-1984), and Henri Cartan (1904— ), decided to form a secret
organization (named Nicolas Bourbaki) that was dedicated to writing defini-
tive texts in the basic subject areas of mathematics, they decided to name
themselves after someone completely ludicrous. For what they were doing
was of the utmost importance for their subject. So it seemed to make sense
to give their work a thoroughly ridiculous byline.

The Nicolas Bourbaki group was formed in the 1930s. Each of the found-
ing members of the organization was himself a prominent and accomplished
mathematician. Each had a broad view of the subject, and a clear vision of
what Bourbaki was meant to be and what it set out to accomplish. Even
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though the books of Bourbaki became well known and widely used through-
out the world, the identity of the members of Bourbaki was a closely guarded
secret. Their meetings, and the venues of those meetings, were kept under
wraps. The inner workings of the group were not leaked by anyone.

The membership of Bourbaki was dedicated to the writing of the funda-
mental texts—in all the basic subject areas—in modern mathematics. Bour-
baki’s method for producing a book was as follows:

e The first rule of Bourbaki is that they would not write about a mathe-
matical subject unless (i) it was basic material that any mathematics
graduate student should know and (ii) it was mathematically “dead”.
This second desideratum meant that the subject area must no longer
be an active area of current research in mathematics. Considerable
discussion was required among the Bourbaki group to determine which
were the proper topics for the Bourbaki books.

e Next there would be extensive and prolonged discussion of the chosen
subject area: what are the important components of this subject, how
do they fit together, what are the milestone results, and so forth. If
there were several different ways to approach the subject (and often in
mathematics that will be the case), then due consideration was given to
which approach the Bourbaki book would take. The discussions we are
describing here often took a long weekend, or several long weekends.
The meetings were punctuated by long and sumptuous meals at good
French restaurants.

e Finally someone would be selected to write the first draft of the book.
This of course was a protracted affair, and could take as long as a year
or more. Jean Dieudonné, one of the founding members of Bourbaki,
was famous for his skill and fluidity at writing. Of all the members of
Bourbaki, he was perhaps the one who served most frequently as the
scribe. Dieudonné was also a prolific mathematician and writer in his
own right.

e After a first draft had been written, copies would be made for the
members of the Bourbaki group. And they would read every word—
assiduously and critically. Then the group would have another meeting
or series of meetings—punctuated as usual by sumptuous repasts at
elegant French restaurants—in which they would go through the book
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page by page or even line by line. The members of Bourbaki were good
friends, and had the highest regard for each other as scholars, but they
would argue vehemently over particular words or particular sentences
in the Bourbaki text. It would take some time for the group to work
together through the entire first draft of a future Bourbaki book.

e After the group got through that first draft, and amassed a copious
collection of corrections and revisions and edits, then a second draft
would be created. This task could be performed by the original author
of the first draft, or by a different author. And then the entire cycle of
work would repeat itself.

It would take several years, and many drafts, for a new Bourbaki book to
be created. The first Bourbaki book, on set theory, was published in 1939;
Bourbaki books, and new editions thereof, have appeared as recently as 2005.
So far there are thirteen volumes in the monumental series I’Eléments de
Mathématique. These compose a substantial library of modern mathematics
at the level of a first or second year graduate student. Topics covered range
from abstract algebra to point-set topology to Lie groups to real analysis. The
writing in the Bourbaki books is crisp, clean, and precise. Bourbaki has a very
strict notion of mathematical rigor. For example, no Bourbaki books contain
any pictures! That is correct. Bourbaki felt that pictures are an intuitive
device, and have no place in a proper mathematics text. If the mathematics
is written correctly then the ideas should be clear—at least after sufficient
cogitation. The Bourbaki books are written in a strictly logical fashion,
beginning with definitions and axioms and then proceeding with lemmas and
propositions and theorems and corollaries. Everything is proved rigorously
and precisely. There are few examples and little explanation. Mostly just
theorems and proofs. There are no “proofs omitted”, no “sketches of proofs”,
and no “exercises left for the reader”.

The Bourbaki books have had a considerable influence in modern mathe-
matics. For many years, other textbook writers sought to mimic the Bourbaki
style. Walter Rudin was one of these, and he wrote a number of influential
texts without pictures and adhering to a strict logical formalism. Certainly,
in the 1950s and 1960s and 1970s, Bourbaki ruled the roost. This group of
dedicated French mathematicians with the fictitious name had set a standard
to which everyone aspired. It can safely be said that an entire generation of
mathematics texts danced to the tune that was set by Bourbaki.
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But fashions change. It is now a commonly held belief in France that
Bourbaki caused considerable damage to the French mathematics enterprise.
How could this be? Given the value system for mathematics that we have
been describing in this article, given the passion for rigor and logic that is
part and parcel of the subject, it would seem that Bourbaki would be our
hero for some time to come. But no. There are other forces at play.

One feature of Bourbaki is that the books were only about pure mathe-
matics. There are no Bourbaki books about applied partial differential equa-
tions, or control theory, or systems science, or theoretical computer science,
or cryptography, or any of the other myriad areas where mathematics is ap-
plied. Another feature of Bourbaki is that it rejects intuition of any kind.!®
Certainly one of the main messages of the present book is that we record
mathematics for posterity in a strictly rigorous, axiomatic fashion. This
is the mathematician’s version of the reproducible experiment with control
used by physicists and biologists and chemists. But we learn mathematics,
we discover mathematics, we create mathematics using intuition and trial
and error. Certainly we draw pictures. Certainly we try things and twist
things around and bend things to try to make them work. Unfortunately,
Bourbaki does not teach any part of this latter process.

Thus, even though Bourbaki has been a role model for what recorded
mathematics ought to be, even though it is a shining model of rigor and the
axiomatic method, it is not necessarily a good and effective teaching tool.
So, in the end, Bourbaki has not necessarily completed its grand educational
mission. Whereas, in the 1960s and 1970s, it was quite common for Bourbaki
books to be used as texts in courses all over the world, now the Bourbaki
books are rarely used anywhere in classes. They are still useful references,
and helpful for self-study. But, generally speaking, there are much better
texts written by other authors. We cannot avoid saying, however, that those
“other authors” certainly learned from Bourbaki. Bourbaki’s influence is still
considerable.

15Tn this sense Bourbaki follows a grand tradition. The master mathematician Carl
Friedrich Gauss used to boast that an architect did not leave up the scaffolding so that
people could see how he constructed a building. Just so, a mathematician does not leave
clues as to how he constructed or found a proof.
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8 Computer-Generated Proofs

8.1 The Difference Between Mathematics and Com-
puter Science

When the average person learns that someone is a mathematician, he or she
often supposes that that person works on computers all day. This conclusion
is both true and false.

Computers are a pervasive aspect of all parts of modern life. The father
of modern computer design was John von Neumann, a mathematician. He
worked with Herman Goldstine, also a mathematician. Today most every
mathematician uses a computer to do e-mail, to typeset his or her papers and
books, and to post material on the WorldWide Web. A significant number
(but well less than half) of mathematicians use the computer to conduct
experiments. They calculate numerical solutions of differential equations,
they calculate propagation of data for dynamical systems and differential
equations, they perform operations research, they engage in the examination
of questions from control theory, and many other activities as well. But the
vast majority of (academic) mathematicians still, in the end, pick up a pen
and write down a proof. And that is what they publish.

The design of the modern computer is based on mathematical ideas—the
Turing machine, coding theory, queuing theory, binary numbers and opera-
tions, high-level languages, and so forth. Certainly operating systems, high-
level computing languages (like Fortran, C++, Java, etc.), central processing
unit (CPU) design, memory chip design, bus design, memory management,
and many other components of the computer world are mathematics-driven.
The computer world is an effective and important implementation of the
mathematical theory that we have been developing for 2500 years. But the
computer is not mathematics. It is a device for manipulating data.

Still and all, exciting new ideas have come about that have altered the
way that mathematics is practiced. The earliest computers were little more
than glorifid calculators; they could do little more than arithmetic. Slowly,
over time, the idea developed that the computer could carry out routines.
Ultimately, because of work of John von Neumann, the idea of the stored-
program computer was developed. In the 1960s, a group at MIT developed
the idea that a computer could perform high-level algebra and geometry and
calculus computations. Their product was called Macsyma. It could only
run on a very powerful computer, and its programming language was very
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complex and difficult.

Today, thanks to Stephen Wolfram (1959— )!6 and the Maple group
at the University of Waterloo'” and the MathWorks group in Natick, Mas-
sachusetts,'®, and many others, we have computer algebra systems. A com-
puter algebra system is a high-level computer language that can do calculus,
solve differential equations, perform elaborate algebraic manipulations, graph
very complicated functions, and perform a vast array of sophisticated math-
ematical operations. And these software products will run on a personal
computer! A great many mathematicians and engineers and other math-
ematical scientists conduct high-level research using these software prod-
ucts. Many Ph.D. theses present results that are based on explorations using
Mathematica or Maple or MatLab. Important new discoveries have come
about because of these new tools.

8.2 How a Computer Can Search a Set of Axioms for
the Statement and Proof of a New Theorem

With modern, high-level computing languages, it is possible to program into
a computer the definitions and axioms of a logical system. And by this we
do not simply mean the words with which the ideas are conveyed. In fact the
machine is given information about how the ideas fit together, what implies
what, what are the allowable rules of logic, and so forth. The programming
language (such as Otter) has a special syntax for entering all this informa-
tion. Equipped with this data, the computer can then search for valid chains
of reasoning (following the hardwired rules of logic, and using only the ax-
ioms that have been programmed in) leading to new, valid statements—or
theorems.

This theorem-proving software can run in two modes: (i) interactive
mode, in which the machine halts periodically so that the user can input
further instructions, and (ii) batch mode, in which the machine runs through
the entire task and presents a result at the end. In either mode, the purpose
is for the computer to find a new mathematical truth and create a logical
chain of thought that leads to it.

Some branches of mathematics, such as real analysis, are rather synthetic.

16 is famous product is Mathematica.
1"Their famous product is Maple.
8 Their famous product is MatLab.
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Real analysis involves estimates and subtle reasoning that does not derive
directly from the twelve axioms in the subject. Thus this area does not lend
itself well to computer proofs, and computer proofs have pretty well passed
this area by.

Other parts of mathematics are more formalistic. There is still insight
and deep thought, but many results can be obtained by fitting the ideas
and definitions and axioms together in just the right way. The computer
can try millions of combinations in just a few minutes, and its chance of
finding something that no human being has ever looked at is pretty good.
The Robbins conjecture from Boolean algebra is a vivid example of such a
discovery.

There still remain aesthetic questions. After the computer has discovered
a new ‘mathematical truth”—complete with a proof—then some human be-
ing or group of human beings will have to examine it and determine its
significance. Is it interesting? Is it useful? How does it fit into the context
of the subject? What new doors does it open?

One would also wish that the computer reveal its chain of reasoning so
that it can be recorded and verified and analyzed by a human being. In
mathematics, we are not simply after the result. Our ultimate goal is under-
standing. So we want to see and learn and understand the proof.

Computers have been used effectively to find new theorems in Boolean
algebra, projective geometry and other classical parts of mathematics. Even
some new theorems in Euclidean geometry have been found (see [CHO]).
Results in algebra have been obtained by Stickel [STI]. New theorems have
also been found in set theory, lattice theory, and ring theory. One could argue
that the reason these results were never found by a human being is that no
human being would have been interested in them. Only time can judge that
question. But certainly the positive resolution of the Robbins conjecture is
of great interest for theoretical computer science and logic.

9 Closing Thoughts

9.1 Why Proofs are Important

Before proofs, about 2600 years ago, mathematics was a heuristic and phe-
nomenological subject. Spurred largely (though not entirely) by practical
considerations of land surveying, commerce, and counting, there seemed to
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be no real need for any kind of theory or rigor. It was only with the advent
of abstract mathematics—or mathematics for its own sake—that it began to
become clear why proofs are important. Indeed, proofs are central to the
way that we view our discipline.

Today, there are tens of thousands of mathematicians all over the world.
Just as an instance, the Notices of the American Mathematical Society has
a circulation of about 30,000. [This is the news organ, and the journal of
record, for the American Mathematical Society.] And abstract mathematics
is a well-established discipline. There are few with any advanced knowledge
of mathematics who would argue that proof no longer has a place in our
subject. Proof is at the heart of the subject; it is what makes mathematics
tick. Just as hand-eye coordination is at the heart of hitting a baseball, and
practical technical insight is at the heart of being an engineer, and a sense
of color and aesthetics is at the heart of being a painter, so an ability to
appreciate and to create proofs is at the heart of being a mathematician.

If one were to remove “proof” from mathematics then all that would
remain is a descriptive language. We could examine right triangles, and
congruences, and parallel lines and attempt to learn something. We could
look at pictures of fractals and make descriptive remarks. We could generate
computer printouts and offer witty observations. We could let the computer
crank out reams of numerical data and attempt to evaluate those data. We
could post beautiful computer graphics and endeavor to assess them. But
we would not be doing mathematics. Mathematics is (i) coming up with new
ideas and (ii) validating those ideas by way of proof. The timelessness and
intrinsic value of the subject come from the methodology, and that method-
ology is proof.

Proofs remain important in mathematics because they are our bellwether
for what we can believe in, and what we can depend on. They are timeless
and rigid and dependable. They are what hold the subject together, and
what make it one of the glories of human thought.

9.2 What Will Be Considered a Proof in 100 Years?

It is becoming increasingly evident that the delinations among “engineer”
and “mathematician” and “physicist” are becoming ever more vague. To-
day engineering and physics use mathematics at a very sophisticated level,
and it is often difficult to tell where one subject ends and the other begins.
The widely proliferated collaboration among these different groups is helping
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to erase barriers and to open up lines of communication. Although “math-
ematician” has historically been a much-honored and respected profession,
one that represents the pinnacle of human thought, we may now fit that
model into a broader context.

It seems plausible that in 100 years we will no longer speak of mathe-
maticians as such but rather of mathematical scientists. This will include
mathematicians to be sure, but also a host of others who use mathematics
for analytical purposes. It would not be at all surprising if the notion of
“Department of Mathematics” at the college and university level gives way
to “Division of Mathematical Sciences”.

In fact we already have a role model for this type of thinking at the Cal-
ifornia Institute of Technology (Caltech). For Caltech does not have depart-
ments at all. Instead it has divisions. There is a Division of Physics, Mathe-
matics, and Astronomy—and these three rather different subjects peacefully
coexist. There is a Division of Biology that includes Biology, Genetics, and
several other fields. The philosophy at Caltech is that departmental divisions
tend to be rather artificial, and tend to cause isolation and lack of commu-
nication among people who would benefit distinctly from cross-pollination.
This is just the type of symbiosis that we have been describing for mathe-
matics in the preceding paragraphs.

So what will be considered a “proof” in the next century? There is
every reason to believe that the traditional concept of pure mathematical
proof will live on, and will be designated as such. But there will also be
computer proofs, and proofs by way of physical experiment, and proofs by
way of numerical calculation. This author has participated in a project—
connected with NASA’s space shuttle program—that involved mathemati-
cians, engineers, and computer scientists. The contributions from the dif-
ferent groups—some numerical, some analytical, some graphical—reinforced
each other, and the end result was a rich tapestry of scientific effort. The
end product is published in [CHE1] and [CHE2]. This type of collaboration,
while rather the exception today, is likely to become ever more common as
the field of applied mathematics grows, and as the need for interdisciplinary
investigation proliferates.

The Mathematics Department that is open to interdisciplinary work is
one that is enriched and fulfilled in a pleasing variety of ways. Colloquium
talks will cover a broad panorama of modern research. Visitors will come
from a variety of backgrounds, and represent many different perspectives.
Mathematicians will direct Ph.D. theses for students from engineering and
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physics and computer science and other disciplines as well. Conversely, math-
ematics students will find thesis advisors in many other departments. One
already sees this happening with students studying wavelets and harmonic
analysis and numerical analysis. The trend will broaden and continue.

So the answer to the question is that “proot” will live on, but it will
take on new and varied meanings. The traditional idea of proof will prosper
because it will interact with other types of verification and affirmation. And
other disciplines, ones that do not traditionally use mathematical proof, will
come to appreciate the value of this mode of intellectual discourse. The end
result will be a richer tapstry of mathematical science and mathematical
work. We will all benefit as a result.
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