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RL

Agent interacts with an environment	

At each time t:	


•  Receives sensor signal	

•  Executes action 	

•  Transition:	


• new sensor signal 	

• reward	
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Goal: find policy    that maximizes expected return (sum of 
discounted future rewards):
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Markov Decision Processes
: set of states	

: set of actions	

: discount factor 	

!
: reward function	

                 is the reward received taking action    from state 	

 and transitioning to state   .	

!
: transition function	

                is the probability of transitioning to state    after 
taking action    in state  . 	

!

RL: one or both of T, R unknown.
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MDPs
Our target is a policy:	

!
!
!
A policy maps states to actions.	

!

The optimal policy maximizes: 	

!
!
!
!
This means that we wish to find a policy that maximizes the 
return from every state.

π : S → A
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Value Functions

Value functions:	

!
!
!
!
State-action value functions:	

!
!
!
!
This is the value of executing   in state  , then following   .	
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πThis is the value of state   under policy   .	
s
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Value Functions

Policy Iteration
This leads to a general policy improvement framework:	


1. Start with a policy 	

2. Learn 	

3. Improve 	


a.  	

!

π

Qπ

π

π(s) = max
a

Q(s, a),∀s
Repeat

This is known as policy iteration. 	

It is guaranteed to converge to the optimal policy.	

!
Steps 2 and 3 can be interleaved as rapidly as you like.	

Usually, perform 3a every time step.

Value Function Learning
Learning proceeds by gathering samples of            .	

 
Methods differ by:	


• How you get the samples.	

• How you use them to update    .Q

Q(s, a)



Monte Carlo
Simplest thing you can do: sample        .	

!
!
!
!
!
!
!
!
!
Do this repeatedly, average values:

R(s)

r
r r r r r r r

Q(s, a) =
R1(s) + R2(s) + ... + Rn(s)

n

Temporal Difference Learning
Where can we get more (immediate) samples?	

!

Idea: there is an important relationship between temporally 
successive states.	

!
!

R(st) = rt + γR(st+1)

r
r r r r r r r

TD Learning
Ideally and in expectation:	

!
!
   is correct if this holds in expectation for all states.	

!
!
When it does not, it is known as a temporal difference error. 	


rt + γV (st+1) − V (st) = 0

V

TD Learning
What does this look like?

st st+1
at

rt

V (st) ← rt + γV (st+1)

Q(st, at) ← rt + γQ(st+1, at+1)



Sarsa
Sarsa: very simple algorithm	

!
1. Initialize Q(s, a)	

2. For n episodes	


• observe transition 	

• compute TD error 	

• update Q: 	

• select and execute action based on Q

(s, a, r, s
′
, a

′)
δ = r + γQ(s′, a′) − Q(s, a)

Q(s, a) = Q(s, a) + αδ

TD
In Sarsa, we use a sample transition:	

This is a sample backup.	

!
Given T, could replace with the full expectation:	

!
!
!
!
!
!

This is known as a full backup - dynamic programming.

(s, a, r, s
′
, a

′)

δ = Eπ,T [r + γQ(s′, a′)] − Q(s, a)
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Finds an optimal policy in time polynomial in      and      .	

(There are          possible policies.)

|S| |A|
|A||S|

TD vs. MC
TD and MC two extremes of obtaining samples of Q:	
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Generalizing TD
We can generalize this to the idea of an n-step rollout:	

!
!
!
!
!
Each tells us something about the value function.	


• We can combine all n-step rollouts.	

• This is known as a complex backup.



TD(λ)
Weighted sum:	

!
!
   .	

   .	

   .	

!
!
!
!
Estimator:	

!
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TD(λ)
This is called the λ-return.	


• At λ=0 we get TD, at λ=1 we get MC.	

• Intermediate values of λ usually best.	

• TD(λ) family of algorithms

Real-Valued States
What if the states are real-valued?	


• Cannot use table to represent Q.	

• States may never repeat: must generalize.
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Function Approximation
How do we represent general function of state variables?	

!
Many choices: 	


• Most popular is linear value function approximation.	

• Use set of basis functions	

• Define linear function of them:	


!
!
!
!

Learning task is to find vector of weights w to best 
approximate V. 

V̄ (x) =
m∑

i=1

wiφi(x)



Function Approximation
One choice of basis functions: 	


• Just use state variables directly: 	

!
Another:	


• Polynomials in state variables.	

• E.g.,	

• This is like a Taylor expansion.	


!
Another:	


• Fourier terms on state variables.	

• E.g., 	

• This is like a Fourier Series expansion.
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[1, cos(πx), cos(πy), cos(π[x + y])]

[1, x, y]

Acrobot

Acrobot Function Approximation

TD-Gammon: Tesauro (circa 1992-1995)	

• At or near best human level	

• Learn to play Backgammon through self-play	

• 1.5 million games	

• Neural network function approximator	

• TD(λ)	


!
Changed the way the best human players played.



Policy Search
So far: improve policy via value function.	


Sometimes policies are simpler than value functions:	

• Parametrized program 	


!
Sometimes we wish to search in space of restricted policies.	

!
In such cases it makes sense to search directly in policy-space 
rather than trying to learn a value function. 	

!

π(s, a|θ)

Policy Search
Can apply any generic optimization method for   .  	

!
One particular approach: policy gradient.	


• Compute and ascend	

• This is the gradient of return w.r.t policy parameters	


!
Policy gradient theorem:	

!
!
!
!
Therefore, one way is to learn Q and then ascend gradient.	

Q need only be defined using basis functions computed from  .

∂R/∂θ

θ

θ

Aibo Gait Optimization
from Kohl and Stone, ICRA 2004.	

!

Postural Recovery



Reinforcement Learning
Machine Learning for control.	

!
Very active area of current research, applications in:	


• Robotics	

• Operations Research	

• Computer Games	

• Theoretical Neuroscience	


!
AI	


• The primary function of the brain is control.	

!
!


