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Recall

Joint distributions:
« P(Xi, ... Xn).
+ Al you (statistically) need to know about X| ... Xu.
+ From it you can infer P(X)), P(X | Xs), etc.

Raining Cold Prob.

True True 0.3
True False 0.1
False True 0.4
False False 0.2

Joint Distributions Are Useful

Classification
« POXi [ X2 ... Xn)

Co-occurrence
« P(Xa, Xb)

Rare event detection
« P(Xi, ... Xn)

Modeling Joint Distributions

Gets large fast
*+ 2" entries for n binary RVs.

Independence!
A bit too strong.
* Rarely holds.

Conditional independence.
+ Good compromise.




Conditional Independence

A and B are conditionally independence given C if:
- P(A|BC)=PA|C)
- PAB|C)=PA|C)PB|C)
(recall independence: P(A, B) = P(A)P(B))
This means that, if we know C, we can treat A and B as

independent.

A and B might not be independent otherwise!

Example

Consider 3 RVs:
+ Temperature
* Humidity
+ Season

Temperature and humidity are not independent.

But, they might be, given the season: the season explains both,
and they become independent of each other.

Bayes Nets

A particular type of graphical model:
+ A directed, acyclic graph.
* A node for each RV.

@O ®

Given parents, each RV independent of non-descendants.

Bayes Net

@O ®

Probability decomposes:
P(xy,..,zpn) = H P(z;|parents(z;))

K2

So for each node, store conditional probability table (CPT):
P(z;|parents(x;))




Example

Suppose we know:
+ The flu causes sinus inflammation.
+ Allergies cause sinus inflammation.
+ Sinus inflammation causes a runny nose.
+ Sinus inflammation causes headaches.

Example

Flu | P Al B
er
True | 0.6 8y
True 0.2
False | 0.4
False 0.8
Stnus | Flu | Allergy P\
True || True True 0.9
False || True True 0.1
True || True False | 0.6 H ead ac h e
False || True False 0.4
True || False False 0.2
False || False False 0.8
True || False True 0.4
False || False True 0.6
Headache || Sinus | P
Nose || Sinus | P True True | 0.6
True || True | 0.8 False True | 0.4
> . True False | 0.5
False || True | 0.2 False False | 0.5

True False | 0.3
False False | 0.7

joint: 32 (31) entries

Naive Bayes

P(S)

P(WIIS) P(W2|S) P(W3|S) P(Wn|S)

(spam filter!)




Uses

Things you can do with a Bayes Net:
+ Inference: given some variables, posterior?
*+ (might be intractable: NP-hard)
+ Learning (fill in CPTs)
+ Structure Learning (fill in edges)

Generally:
+ Often few parents.
+ Inference cost often reasonable.
+ Can include domain knowledge.

Inference

What is:

P(f| h)?
Allergy

Inference

P(fvh) _ ZSANP(f7h757A7N)
) ZSANFP(h?SaAaNaF)

We know from definition of Bayes net: p
P(h) = Z P(h,S, A, N, F) O?KC)
SANF O

P(hy= 3" P(h|S)P(N|S)P(S|A, F)P(F)P(A)
SANF

Variable Elimination

So we have:

P(h)= Y P(hS)P(N|S)P(S|A, F)P(F)P(A)
SANF

... we can eliminate variables one at a time:
(distributive law)

P(h) =" P(hS)P(N|S) Y P(S|A, F)P(F)P(A)
SN AF

P(h)=> P(h|S)Y P(N|S)Y  P(S|A,F)P(F)P(A)
S N AF




Variable Elimination

Generically:
+ Query about X; and X
* Write out P(X| ... Xy) in terms of P(X; | parents(Xi))
+ Sum out all variables except X; and X;
+ Answer query using joint distribution P(X X;)

Good news:
+ Potentially exponential reduction in computation.
+ Polynomial for trees.

Bad news:
+ Picking variables in optimal order NP-Hard.
» For some networks, no elimination.

Spam Filter (Naive Bayes)

P(S)

() () ()

P(W1[S) P(W2[S) P(W3|S)

Want P(S |W, ... W,)

()

P(Wn|S)

Naive Bayes

given
P(S|Wl,,Wn)
B ‘ (from the
P(Wi, ..., Wy|S) = IZIP(WAS) Bayes Net)

Bayes Nets

Potentially very compressed but exact.
*+ Requires careful construction!

VS

Approximate representation.
+ Hope you're not too wrong!

Many, many applications in all areas.




