
FRANCESCA ROSSI

Voting over combinatorial
domains

Duke University, Feb.13, 2015

Centralized decision making (rank aggregation)

�  Several agents judge a set of items
�  A collective decision has to be made
�  From the individuals’ rankings to a

single ranking
�  Respecting the judges’ preferences as

much as possible

�  Examples:
¡  Web search engines ranking web pages
¡  Cameras ranking the plausible

interpretations of an object
¡  A hiring committee
¡  Recommender systems
¡  Friends deciding where to go for dinner
¡  Political elections

�  Environment: judges’
preferences (or polls)

�  Goal: collective preference
ranking

�  Actions: choose an
aggregation method

�  Uncertainty: over the
rankings

�  Centralized approach to
achieve consensus or
compromise

Duke University, Feb.13, 2015

A simple example: friends choosing a dinner

�  They want to eat the same meal
¡  Pasta, main dish, dessert, drink

�  5 options for each
 è 54 = 625 possible dinners
�  Each friend has his own preferences

over the possible dinners
�  We need to choose one of them
�  How do we model their preferences?
�  How do we choose the single meal they

will all eat?

Duke University, Feb.13, 2015

These scenarios are more and more frequent

�  People are connected and want
to take decisions with their
friends or peers

�  Online social networks
�  Influences among agents
�  Manipulations
�  Not just people, also “things”

¡  50 billion connected by 2020

Duke University, Feb.13, 2015

More formal setting

�  From
¡  M candidates
¡  N agents
¡  For each agent, a preference order over the candidates

�  we want to get
¡  A single ordering of the candidates (social welfare function)
¡  Or at least a “winning” candidate (social choice function)

�  such that
¡  the preferences of the agents are “considered”

�  We can exploit concepts and techniques from voting
theory (social choice)
¡  After all, it looks like an election!

Duke University, Feb.13, 2015

Voting rules (social choice functions)

�  Plurality: one vote for each agent, score is number of
votes

�  Borda: each agent give full ranking, score depend on
the position on the ranking

�  Approval: each agent approves some candidates,
score is number of approvals

�  K-approval: each agent approves k candidates
�  Also many others

¡  Kemeny, Single Transferrable Vote, Veto, Copeland, Minimax,
Range, Schulze, Banks, Slater, Bucklin, Dogson, …

Duke University, Feb.13, 2015

Plurality

�  Vote: 1 candidate
�  Result: candidate(s) with the most vote(s)
�  Example:

¡  6 voters
¡  Candidates:

Winner

Duke University, Feb.13, 2015

Borda

1 voter 1 voter 1 voter 1 voters 1 voter

3

2

1

0

rank

3

2

1

0

rank

3

2

1

0

rank

3

2

1

0

rank

3

2

1

0

rank

9

8

7

6

Borda
Count

Winner

Duke University, Feb.13, 2015

Approval

1 voter 1 voter 1 voter 1 voters 1 voter

4

3

3

1

Scores
Winner

Duke University, Feb.13, 2015

2-approval

1 voter 1 voter 1 voter 1 voters 1 voter

4

3

2

1

Scores
Winner

Duke University, Feb.13, 2015

Which social choice function should we choose?

�  With 2 candidates, easy: majority!
�  With more than 2 candidates, look at their properties
�  Examples of properties:

¡  We don’t want one friend to be always deciding the dinner,
independently of what the other friends say (non-dictatorship)

¡  If everybody says that dinner A is preferred to dinner B, we
don’t want B to be chosen (Pareto-efficiency)

¡  Between A and B, the fact that A is chosen, or B, or none,
should depend only on how the friends ordered A and B
(independence of irrelevant alternatives)

Duke University, Feb.13, 2015

Which social choice function should we choose?

�  With 2 candidates, easy: majority!
�  With more than 2 candidates, look at their properties
�  Examples:

¡  We don’t want one friend to be always deciding the dinner,
independently of what the other friends say (non-dictatorship)

¡  If everybody says that dinner A is preferred to dinner B, we don’t
want B to be chosen (Pareto-efficiency)

¡  Between A and B, the fact that A is chosen, or B, or none, should
depend only on how the friends ordered A and B (independence of
irrelevant alternatives)

�  Unfortunately …. No voting rule has these
 three properties!

¡  Kenneth Arrow, Nobel in economics, 1972

Duke University, Feb.13, 2015

Another desirable property: strategy-proofness

�  A social choice function is strategy-proof if agents
cannot manipulate the result

�  Manipulation: misreporting his preferences in order
to get a better result

Duke University, Feb.13, 2015

Manipulation

49% 20% 20% 11%

Plurality

49% 20% 20% 11%

Plurality
Duke University, Feb.13, 2015

Again not possible

�  Unfortunately …. all social choice functions are
manipulable!
¡  Unless we accept dictatoriality or some candidate that can

never win
¡  Gibbard-Sattherwite theorems, 1975

Duke University, Feb.13, 2015

Is it difficult to (check if we can) manipulate?

�  We consider computational difficulty
¡  Exponential time to figure out how to

manipulate, knowing how the other agents
will vote, in the worst case

¡  Easy when it takes always polynomial time
�  It depends on the voting rule

¡  Easy for Plurality, Borda, and Approval
¡  Difficult for other rules, like STV

�  We could use voting rules where it is
computationally difficult to (check if
we can) manipulate!
¡  So we mitigate the impossibility result

Duke University, Feb.13, 2015

Is it computationally easy to compute the
winner?

�  Yes, for most of the rules
¡  Plurality, Borda, approval, …

�  But not for all
¡  Example: Kemeny rule

Duke University, Feb.13, 2015

Multiple issues

�  Until now we have considered voting over one
issue only

�  Now we consider several issues
�  Example:

¡  3 referendum (yes/no)
¡  Each voter has to give his preferences over triples of yes and

no
¡  Such as: YYY>NNN>YNY>YNN>etc.

�  With k issues, k-tuples (2k if binary issues)

Duke University, Feb.13, 2015

Paradox of multiple elections

�  13 voters are asked to each vote yes or no on 3
issues:
¡  3 voters each vote for YNN, NYN, NNY
¡  1 voter votes for YYY, YYN, YNY, NYY
¡  No voter votes for NNN

�  Majority on each issue: the winner is NNN!
¡  Each issue has 7 out of 13 votes for no

è not reasonable to vote independently over the
features

Duke University, Feb.13, 2015

Plurality on combinations

�  Ask each voter for her most preferred combination
and apply plurality
¡  Avoids the paradox, computationally light
¡  Almost random decisions
¡  Example: 10 binary issues, 20 voters è 210 = 1024

combinations to vote for but only 20 voters, so very high
probability that no combination receives more than one vote
è tie-breaking rule decides everything

�  Similar also for voting rules that use only a small
part of the voters’ preferences (ex.: k-approval with
small k)

Duke University, Feb.13, 2015

Other rules on combinations

�  Vote on combinations and use other voting rules that
use the whole preference ordering on combinations

�  Avoids the arbitrariness problem of plurality
�  Not feasible when there are large domains
�  Example:

¡  Borda (needs the whole preference ordering)
¡  6 binary issues è 26=64 possible combinations è each voter

has to choose amongst 64! possible ballots

Duke University, Feb.13, 2015

Sequential voting

�  Vote separately on each issue, but do so sequentially
�  This gives voters the opportunity to make their vote

for one issue depend on the decisions on previous
issues

Duke University, Feb.13, 2015

Condorcet losers

�  Condorcet loser (CL): candidate that loses against
any other candidate in a pairwise contest

�  Electing a CL is very bad, but Plurality sometimes
elects it

�  Example:
¡  2 votes for X > Y > Z
¡  2 votes for Y > X > Z
¡  3 votes for Z > X > Y
¡  Z is the Plurality winner and the Condorcet loser

Duke University, Feb.13, 2015

Sequential voting and Condorcet losers

�  Sequential voting avoids the problem of electing
Condorcet losers

�  Thm.: Sequential plurality voting over binary issues
never elects a Condorcet loser
¡  Proof: Consider the election for the final issue. The winning

combination cannot be a CL, since it wins at least against the
other combination that was still possible after the penultimate
election

¡  [Lacy, Niou, J. of Theoretical Politics, 2000]

�  But no guarantee that sequential voting elects the
Condorcet winner (Condorcet consistency)

Duke University, Feb.13, 2015

How to express preferences compactly over a set
of related items?

�  When there are many candidates, unfeasible to rank
them all
¡  Think of the dinner example: 625 possible dinners!

�  We need a compact way to say what we prefer
�  Two main options

¡  Quantitative (ex. Soft constraints)
÷ Decide on a scale, ex. from 0 to 5, where higher number means

more preferred
÷ Evaluate some parts of the dinner over this scale

¡  Qualitative (ex. CP-nets)
÷ Dependence between items, total order on the options for each

item

Duke University, Feb.13, 2015

Duke University, Feb.13, 2015

Example: fuzzy constraints

Lunch time= 13
Meal = meat
Wine = white
Swimming time= 14

 Decision A

pref(A)=min(0.3,0)=0

Lunch time = 12
Meal = fish
Wine = white
Swimming time = 14

 Decision B

pref(B)=min(1,1)=1

{12,	 13}	 {14,	 15}	

Lunch	
/me	

Swimming	 	
/me	

(12,	 15)	 à	 1	

(12,	 14)	 à	 1	 	 	 (13,	 14)	 à	 0	

	 	 (13,	 15)	 à	 1	

{fish,	 meat}	 {white,	 red}	

meal	 wine	

(fish,	 red)	 à	 0.8	

(fish,	 white)	 à	 1	 (meat,white)	 à	 0.3	

(meat,	 red)	 à	 0.7	

Preference of a decision: minimal preference of its parts
Aim: to find a decision with maximal preference
Preference values: between 0 and 1

Example: CP-net

fish>meat	

peaches	 >	 strawberries	

Main
course Wine

 fish white >
red

 meat red >
white

Main	 	
course	

Fruit	

Wine	

Fish,	 white,	 peaches	

Fish,	 red,	 peaches	 Fish,	 white,	 berries	

Fish,	 red,	 berries	

meat,	 red,	 peaches	

meat,	 red,	 berries	 meat,	 white,	 peaches	

meat,	 white,	 berries	

Op/mal	 solu/on	

Duke University, Feb.13, 2015

Soft constraints vs. CP-nets

all all some some
difficult easy difficult easy

easy easy difficult difficult

difficult difficult for
weighted,
easy for fuzzy

difficult easy

difficult easy easy easy

Duke University, Feb.13, 2015

Preference orderings

Find an optimal decision

Compare two decisions

Find the next best
Decision

Check if a decision

is optimal

Soft CSPs Tree-like
soft CSPS

CP-nets Acyclic CP-
nets

Sequential voting with soft constraints

�  Agents expressing preferences via soft constraints
�  Over a common set of decisions/options

¡  options = complete variable assignments
�  Same vars and var domains for all agents, different soft constraints
�  Profile = preferences of all agents

¡  Explicit profile: preference orderings are given
¡  Implicit profile: compact representation of the preferences

�  We will select a decision using a voting rule
¡  Decision = solution for the agents soft constraint satisfaction problems (sof CSP)
¡  Voting rule: function from an explicit profile to a decision

�  In the dinner example:
¡  Each friend has his own soft CSP to express the preferences over the dinners
¡  We need to select one dinner over the 625 possible ones

Duke University, Feb.13, 2015

Agent 1 Agent 2 Agent 3

Dinner example using plurality

Pasta

Drink

Pesto 1
Tom 0.7

(Pesto, Beer) 1
(Pesto,Wine) 0.5
(Tom ,Beer) 0.7
(Tom,Wine) 0.3

Beer 1
Wine 0.7

Pasta

Drink

Pesto 0.9
Tom 1

(Pesto, Beer) 1
(Pesto,Wine) 0.9
(Tom ,Beer) 0.9
(Tom,Wine) 0.9

Beer 1
Wine 1

Pasta

Drink

Pesto 1
Tom 0.3

(Pesto, Beer) 1
(Pesto,Wine) 0.3
(Tom ,Beer) 0.3
(Tom,Wine) 1

Beer 1
Wine 1

Plurality Pasta
 =
Pesto

Pesto 1
Tom 0

Pesto 0.9
Tom 0

Pesto 1
Tom 0

(Pesto, Beer) 1
(Pesto,Wine) 0.5
(Tom ,Beer) 0
(Tom,Wine) 0

(Pesto, Beer) 1
(Pesto,Wine) 0.9
(Tom ,Beer) 0
(Tom,Wine) 0

(Pesto, Beer) 1
(Pesto,Wine) 0.3
(Tom ,Beer) 0
(Tom,Wine) 0

Beer 1
Wine 0.5

Beer 1
Wine 0.9

Beer 1
Wine 0.3

Plurality Drink
 =
Beer

Winner
Duke University, Feb.13, 2015

Sequential voting with CP-nets

�  n voters, voting by giving a CP-net each
¡  Same variables, different dependency graph and CP tables

�  Compatible CP-nets: there exists a linear order on
the variables that is compatible with the
dependency graph of all CP-nets (that is, it
completes the DAG)

�  Then vote sequentially in this order
�  Thm.: Under these assumptions, sequential voting

is Condorcet consistent if all local voting rules are
¡  (Lang and Xia, Math. Social Sciences, 2009)

Duke University, Feb.13, 2015

ROVER 1 ROVER 2 ROVER 3

Example

WHER
E

WHA
T

Loc-A >Loc-B

WHER
E

WHA
T

Loc-B> Loc-A

St2>St1

WHER
E

WHA
T

Loc-A >Loc-B

Plurality WHERE
 =

Loc-A

Loc-A Loc-A Loc-A

Plurality

WHAT
 =

Image

Winner

3 Rovers must decide:
•  Where to go: Location A or Location B
•  What to do: Analyze a rock or Take a picture
•  Which station to downlink the data to: Station 1 or Station 2

Image >Analyze

DLIN
K

St1 >St2

DLIN
K

DLIN
K

St2>St1

Loc-A: Image > Analyze
Loc-B: Analyze> Image

Plurality

DLINK
 =
 St2

Analyze >Image Image >Analyze

Loc-A: Analyze> Image
Loc-B: Image> Analyze

Duke University, Feb.13, 2015

Sequential voting:
soft constraints vs. CP-nets

Duke University, Feb.13, 2015

�  With soft constraints
¡  Solving and projecting at each step
¡  Tractable in some case (ex. Tree)
¡  But no requirement on compatibility among SCSPs

�  With CP-nets
¡  Directional dependency links
¡  Compatibility is required
¡  No solving/projecting effort

