A better rule for aggregating societal tradeoffs

Vincent Conitzer conitzer@cs.duke.edu

Recall our motivating example

Just taking medians pairwise results in inconsistency

Recall the rule from the midterm

- Let $t_{a,b,i}$ be voter i's tradeoff between a and b
- Tradeoff profile t has score

 $\boldsymbol{\Sigma}_{i} \boldsymbol{\Sigma}_{a,b} \mid \boldsymbol{t}_{a,b} \textbf{ - } \boldsymbol{t}_{a,b,i} \mid$

- Upsides:
 - Coincides with median for 2 activities
- Downsides:
 - Dependence on choice of units:

 $\mid \textbf{t}_{a,b} \textbf{ - t}_{a,b,i} \mid \neq \mid 2\textbf{t}_{a,b} \textbf{ - 2t}_{a,b,i} \mid$

– Dependence on direction of edges:

$$| t_{a,b} - t_{a,b,i} | \neq | 1/t_{a,b} - 1/t_{a,b,i} |$$

- We don't have a general algorithm

A generalization

- Let $t_{a,b,i}$ be voter i's tradeoff between a and b
- Let f be a monotone increasing function say,
 f(x) = x²
- Tradeoff profile t has score

 $\Sigma_i \Sigma_{a,b} | f(t_{a,b}) - f(t_{a,b,i}) |$

Still coincides with median for 2 activities!

$$\begin{array}{c}t_{a,b}\\ \hline 1 & 2 & 3\\ \hline f(t_{a,b}) \end{array} \begin{array}{c}1 & 2 & 3\\ \hline 1 & 4 & 9\end{array}$$

An MLE justification

 Suppose probability of tradeoff profile {t_i} given true tradeoff t is

 $\prod_{i} \prod_{a,b} \exp\{-| f(t_{a,b}) - f(t_{a,b,i})|\}$

• Then arg max_t $\prod_i \prod_{a,b} exp\{-| f(t_{a,b}) - f(t_{a,b,i}) |\} =$ arg max_t log $\prod_i \prod_{a,b} exp\{-| f(t_{a,b}) - f(t_{a,b,i}) |\} =$ arg max_t $\Sigma_i \Sigma_{a,b} -| f(t_{a,b}) - f(t_{a,b,i}) | =$ arg min_t $\Sigma_i \Sigma_{a,b} | f(t_{a,b}) - f(t_{a,b,i}) |$ which is our rule!

So what's a good f?

- Intuition: Is the difference between tradeoffs of 1 and 2 the same as between 1000 and 1001, or as between 1000 and 2000?
- So how about f(x)=log(x)?
 - (Say, base e remember $log_a(x)=log_b(x)/log_b(a)$)

t _{ab}	12	1000		2000
$ln(t_{a,b})$	ln(1)	ln(2)	In(1000)) In(2000)
····(·a,b/	0	0.69	6.91	7.60

On our example

Properties

- Independence of units

 | log(1) log(2) | = | log(1/2) | =
 | log(1000/2000) | = | log(1000) log(2000) |

 More generally:

 | log(ax) log(ay) | = | log(x) log(y) |

Consistency constraint becomes additive

xy = zis equivalent to log(xy) = log(z)is equivalent to log(x) + log(y) = log(z)

An additive variant

 "I think basketball is 5 units more fun than football, which in turn is 10 units more fun than baseball"

Aggregation in the additive variant

Natural objective:

minimize $\Sigma_i \Sigma_{a,b} d_{a,b,i}$ where $d_{a,b,i} = |t_{a,b} - t_{a,b,i}|$ is the distance between the aggregate difference $t_{a,b}$ and the subjective difference $t_{a,b,i}$

objective value 70 (optimal)

A linear program for the additive variant

q_a: aggregate assessment of quality of activity a (we're really interested in $q_a - q_b = t_{a,b}$) d_{a,b,i}: how far is i's preferred difference t_{a,b,i} from aggregate $q_a - q_b$, i.e., $d_{a,b,i} = |q_a - q_b - t_{a,b,i}|$ minimize $\Sigma_i \Sigma_{a,b} d_{a,b,i}$ subject to for all a,b,i: $d_{a,b,i} \ge q_a - q_b - t_{a,b,i}$ for all a,b,i: $d_{a,b,i} \ge t_{a,b,i} - q_a + q_b$

(Can arbitrarily set one of the q variables to 0)

Applying this to the logarithmic rule in the multiplicative variant

Just take logarithms on the edges, solve the additive variant, and exponentiate back

