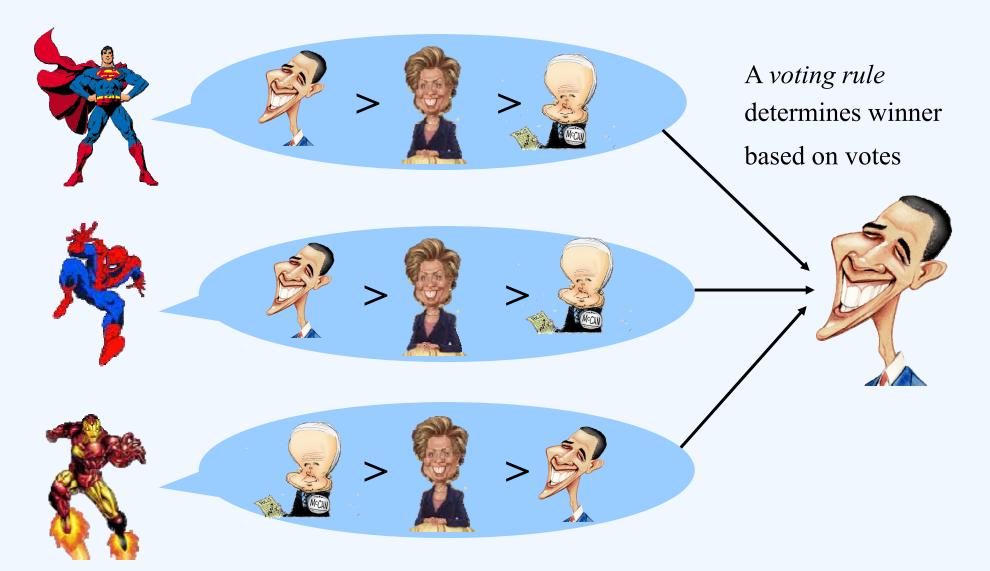
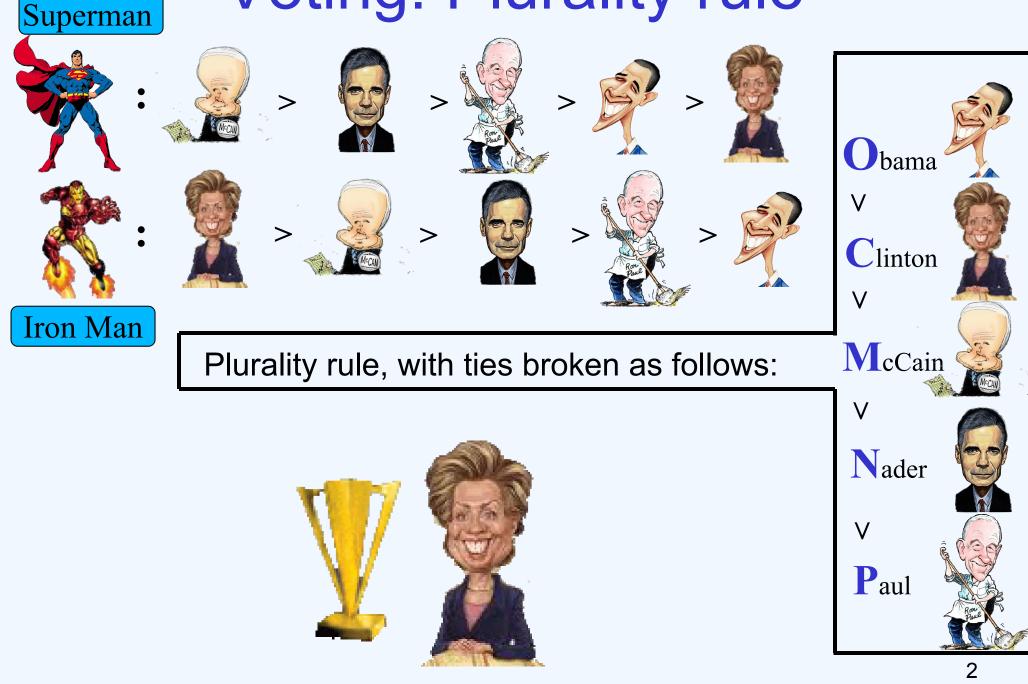
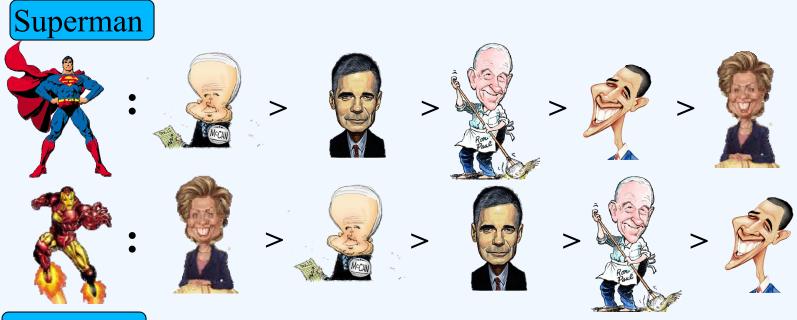

Strategic voting

with thanks to:


Lirong Xia

Jérôme Lang




Let's vote!

Voting: Plurality rule

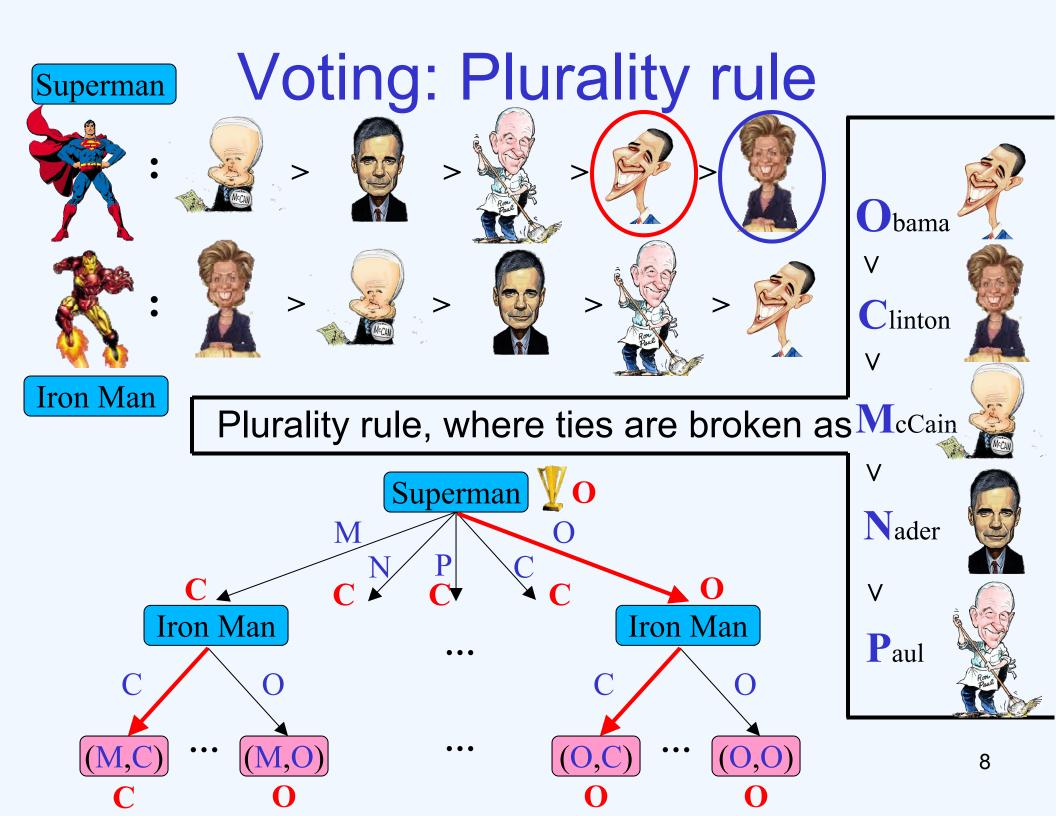
Voting: Borda rule

Iron Man

Simultaneous-move voting games

- *Players:* Voters 1,...,*n*
- Preferences: Linear orders over alternatives
- Strategies / reports: Linear orders over alternatives
- *Rule:* r(P'), where P' is the reported profile
- Nash equilibrium: A profile P' so that no individual has an incentive to change her vote (with respect to the true profile P)

Many bad Nash equilibria...


- Majority election between alternatives *a* and *b*
 - Even if everyone prefers a to b, everyone voting for <u>b is an equilibrium</u>
 - Though, everyone has a weakly dominant strategy
- Plurality election among alternatives *a*, *b*, *c*
 - In equilibrium everyone might be voting for *b* or *c*,
 even though everyone prefers *a*!
- Equilibrium selection problem

Voters voting sequentially

Duke CS TGIF* Movie Night		
Do you plan to attend the next movie night? Yes, count me in! Yes, count me in! (Vegetarian) Current count: 29 29		
Current top films:		
	mal Sunshine o	of the Spotless Mind
3. <u>Pulp</u>	<u>Fiction</u>	
		Willow
4 vote(s) You have voted for this film.	-	[link] This epic Lucasfilm fantasy serves up enough magical adventure to satisfy fans of the genre, though it treads familiar territory. With abundant parallels to Star Wars, the story (by George Lucas) follows the exploits of the little farmer Willow (Warwick Davis), an aspiring sorcerer appointed to deliver an infant princess from the evil queen (Jean Marsh) to whom the child is a crucial threat. Val Kilmer plays the warrior who joins Willow's campaign with the evil queen's daughter (Joanne Whalley, who later married Kilmer). Impressive production values, stunning locations (in England, Wales, and New Zealand) and dazzling special effects energize the routine fantasy plot, which alternates between rousing action and cute sentiment while failing to engage the viewer's emotions. A parental warning is appropriate: director Ron Howard has a light touch aimed at younger viewers, but doesn't shy away from grisly swordplay and at least one monster (a wicked two-headed dragon) that could induce nightmares.
		Trailer: <u>http://matttrailer.com/willow 1988</u>
10 vote(s) You have voted for this film.	Description:	Pulp Fiction [link] http://www.youtube.com/watch?v=OAHETuK70Sc The lives of two mob hit men, a boxer, a gangster's wife, and a pair of diner bandits intertwine in four tales of violence and redemption
		Tom yum goong
You have voted for this film.	Description:	[link] In Bangkok, the young Kham was raised by his father in the jungle with elephants as members of their family. When his old elephant and the baby Kern are stolen by criminals, Kham finds that the animals were sent to Sidney. He travels to Australia, where he locates the baby elephant in a restaurant owned by the evil Madame Rose, the leader of an international Thai mafia. With the support of the efficient Thai sergeant Mark, who was involved in a conspiracy, Kham fights to rescue the animal from the mobsters.
12		Dogville
- vote(s) You have voted for this	-	[link] Dogville is a 2003 philosophical drama written and directed by Lars von Trier, and starring Nicole Kidman. It is a parable that uses an extremely minimal, stage-like set to tell the story of Grace Mulligan (Kidman), a woman hiding from mobsters, who arrives in the small mountain town of Dogville and is provided refuge in return for physical labor. Because she has to win and keep the acceptance of every single one of the inhabitants of the town to be allowed to stay, any attempt by her to do things her own way or to put a limit on her service risks driving her back out into the

Our setting

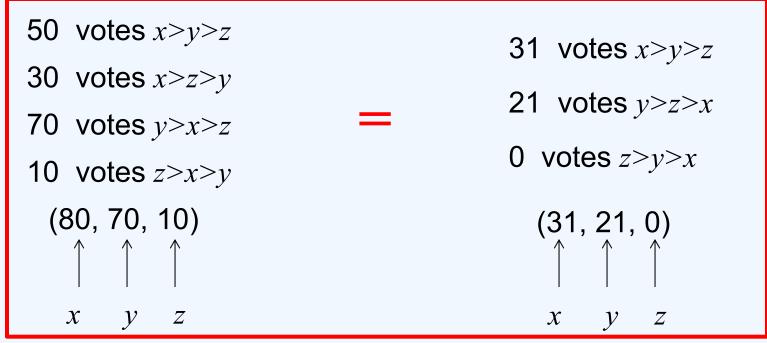
- Voters vote sequentially and strategically
 - voter $1 \rightarrow \text{voter } 2 \rightarrow \text{voter } 3 \rightarrow \dots \text{ etc}$
 - states in stage *i*: all possible profiles of voters 1,...,*i*-1
 - any terminal state is associated with the winner under rule r
- At any stage, the current voter knows
 - the order of voters
 - previous voters' votes
 - true preferences of the later voters (complete information)
 - rule r used in the end to select the winner
- We call this a **Stackelberg voting game**
 - Unique winner in subgame perfect Nash equilibrium (not unique SPNE)
 - the subgame-perfect winner is denoted by SG_r(P), where P consists of the true preferences of the voters

Literature

- Voting games where voters cast votes one after another
 - [Sloth GEB-93, Dekel and Piccione JPE-00, Battaglini GEB-05, Desmedt & Elkind EC-10]

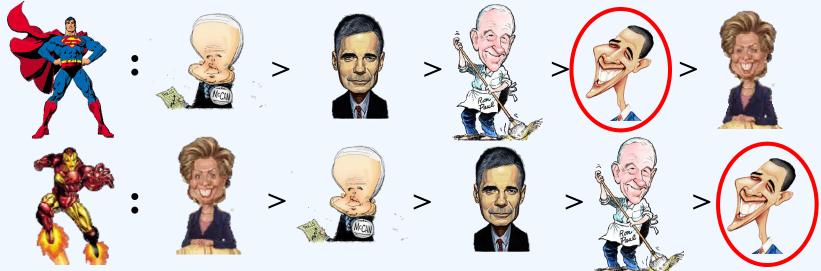
Key questions

How can we compute the backwardinduction winner efficiently (for general voting rules)?


How good/bad is the backwardinduction winner?

Computing SG_r(P)

- Backward induction:
 - A state in stage *i* corresponds to a profile for voters 1, ...,
 i-1
 - For each state (starting from the terminal states), we compute the winner if we reach that point
- Making the computation more efficient:
 - depending on *r*, some states are equivalent
 - can merge these into a single state
 - drastically speeds up computation


An equivalence relationship between profiles

- The plurality rule
- 160 voters have cast their votes, 20 voters remaining

This equivalence relationship is captured in a concept called ulletcompilation complexity [Chevaleyre et al. IJCAI-09, Xia & C. AAAI-10] 12

Paradoxes

Plurality rule, where ties are broken according to

🗑 > 🤯 > 🞯

- The SG_{Plu} winner is \mathcal{P}
- Paradox: the SG_{Plu} winner is ranked almost in the bottom position in all voters' true preferences

What causes the paradox?

- Q: Is it due to the bad nature of the plurality rule / tiebreaking, or it is because of the strategic behavior?
- A: The strategic behavior!
 - by showing a ubiquitous paradox

Domination index

- For any voting rule r, the domination index of r when there are n voters, denoted by DI_r(n), is:
- the smallest number k such that for any alternative c, any coalition of n/2+k voters can guarantee that c wins.
 - The DI of any majority consistent rule *r* is 1, including any Condorcet-consistent rule, plurality, plurality with runoff, Bucklin, and STV
 - The DI of any positional scoring rule is no more than

n/2-n/m

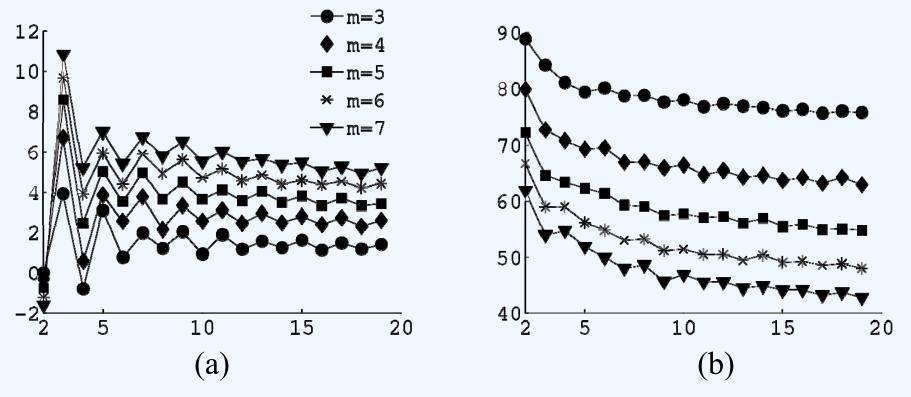
- Defined for a voting rule (not for the voting game using the rule)
- Closely related to the anonymous veto function [Moulin 91]

Main theorem (ubiquity of paradox)

- **Theorem 1**: For any voting rule *r* and any *n*, there exists an *n*-profile *P* such that:
 - *(many voters are miserable)* $SG_r(P)$ is ranked somewhere in the bottom two positions in the true preferences of $n-2 \cdot DI_r(n)$ voters
 - *(almost Condorcet loser)* if $DI_r(n) < n/4$, then $SG_r(P)$ loses to all but one alternative in pairwise elections.

Proof

Lemma: Let *P* be a profile. An alternative *d* is not the winner SG_r(P) if there exists another alternative *c* and a subprofile P_k = (V_{i1},..., V_{ik}) of *P* that satisfies the following conditions:
(1) k ≥ ⌊n/2⌋ + DI_r(n), (2) c>d in each vote in P_k, (3) for any 1≤ x < y ≤ k, Up(V_{ix}, c) ⊇ Up(V_{iy}, c), where Up(V_{ix}, c) is the set of alternatives ranked higher than c in V_{ix}

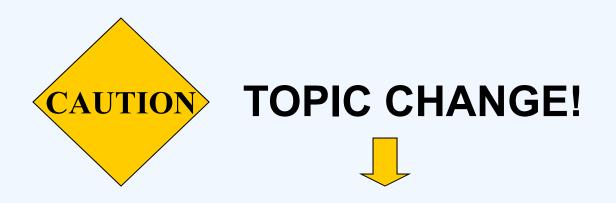

$$V_{1} = \dots = V_{\lfloor n/2 \rfloor - \mathsf{DI}_{r}(n)} = \begin{array}{c} c_{3} > \dots > c_{m} > c_{1} > c_{2} \\ V_{\lfloor n/2 \rfloor - \mathsf{DI}_{r}(n)+1} = \dots = V_{\lfloor n/2 \rfloor + \mathsf{DI}_{r}(n)} = \begin{array}{c} c_{1} > c_{2} > c_{3} > \dots > c_{m} \\ c_{2} > c_{3} > \dots > c_{m} \end{array}$$
$$V_{\lfloor n/2 \rfloor + \mathsf{DI}_{r}(n)+1} = \dots = V_{n} = \begin{array}{c} c_{2} > c_{3} > \dots > c_{m} > c_{1} \\ c_{2} > c_{3} > \dots > c_{m} > c_{1} \end{bmatrix}$$

- c_2 is not a winner (letting $c = c_1$ and $d = c_2$ in the lemma)
- For any $i \ge 3$, c_i is not a winner (letting $c = c_2$ and $d = c_i$ in the lemma)

What do these paradoxes mean?

- These paradoxes state that for any rule *r* that has a low domination index, *sometimes* the backward-induction outcome of the Stackelberg voting game is undesirable
 - the DI of any majority consistent rule is 1
- Worst-case result
- Surprisingly, on average (by simulation)
 - # { voters who prefer the SG_r winner to the truthful r winner}
 - > # { voters who prefer the truthful *r* winner to the *SG_r* winner}

Simulation results


- Simulations for the plurality rule (25000 profiles uniformly at random)
 - x-axis is #voters, y-axis is the percentage of voters
 - (a) percentage of voters where SG_r(P) > r(P) minus percentage of voters where r(P) >SG_r(P)
 - (b) percentage of profiles where the $SG_r(P) = r(P)$
- *SG_r* winner is preferred to the truthful *r* winner by more voters than vice versa
 - Whether this means that SG_r is "better" is debatable

Interesting questions

- How can we compute the winner or ranking more efficiently?
- How can we communicate the voters' preferences more efficiently?
- How can we use computational complexity as a barrier against manipulation and control?
- How can we analyze agents' strategic behavior from a game-theoretic perspective?
- How can we aggregate voters' preferences when the set of alternatives has a combinatorial structure?

Outline


 Stackelberg Voting Games: Computational Aspects and Paradoxes

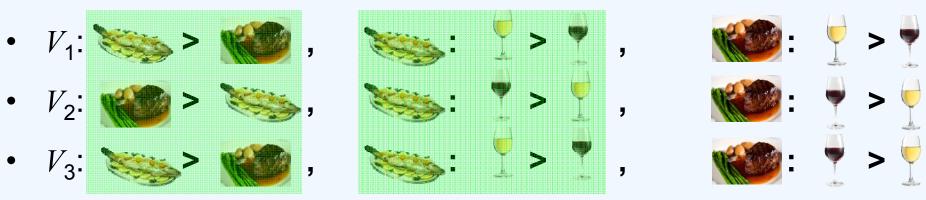
Strategic Sequential Voting in Multi-Issue
 Domains and Multiple-Election Paradoxes

Voting over joint plans [Brams, Kilgour & Zwicker SCW 98]

- The citizens of LA county vote to directly determine a government plan
- Plan composed of multiple sub-plans for several issues

of candidates is exponential in the # of issues

Combinatorial voting: Multi-issue domains


- The set of candidates can be uniquely characterized by multiple issues
- Let $I=\{x_1,...,x_p\}$ be the set of p issues
- Let D_i be the set of values that the *i*-th issue can take, then $C=D_1\times\ldots\times D_p$

} ×{ 🛡

- Example:
 - Issues={ Main course, Wine }

Sequential rule: an example

- Issues: main course, wine
- Order: main course > wine
- Local rules are majority rules

- Step 1: 💥
- Step 2: given 🐜
- Winner: (ৈ 🦣

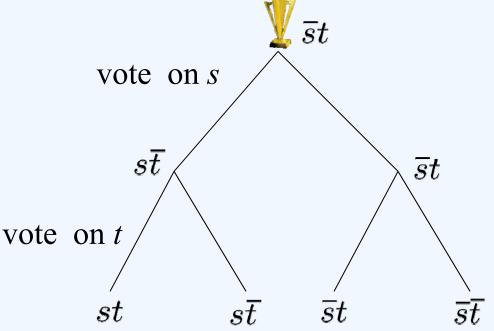
is the winner for wine

Strategic sequential voting (SSP)

- Binary issues (two possible values each)
- Voters vote simultaneously on issues, one issue after another according to *O*
- For each issue, the majority rule is used to determine the value of that issue
- Game-theoretic aspects:
 - A complete-information extensive-form game
 - The winner is unique (computed via backward induction)

Strategic sequential voting: Example

S


 $V_1 : st > \overline{st} > s\overline{t} > \overline{s\overline{t}}$ $V_2 : s\overline{t} > st > \overline{st} > \overline{s\overline{t}}$ $V_3 : \overline{st} > \overline{s\overline{t}} > s\overline{t} > s\overline{t} > s\overline{t}$

- In the first stage, the voters vote simultaneously to determine S; then, in the second stage, the voters vote simultaneously to determine T
- If **S** is built, then in the second step $t > \overline{t}$, $\overline{t} > t$, $\overline{t} > t$ so the winner is $s\overline{t}$
- If **S** is **not** built, then in the 2nd step $t > \overline{t}$, $t > \overline{t}$, $t > \overline{t}$ so the winner is \overline{st}
- In the first step, the voters are effectively comparing $s\overline{t}$ and $\overline{s}t$, so the votes are $\overline{s} > s$, $s > \overline{s}$, $\overline{s} > s$, and the final winner is $\overline{s}t$

Voting tree

• The winner is the same as the (truthful) winner of the following *voting tree*

- "Within-state-dominant-strategy-backward-induction"
- Similar relationships between backward induction and voting trees have been observed previously [McKelvey&Niemi JET 78], [Moulin Econometrica 79], [Gretlein IJGT 83], [Dutta & Sen SCW 93]

Paradoxes: overview

- Strong paradoxes for strategic sequential voting (SSP)
- Slightly weaker paradoxes for SSP that hold for any O (the order in which issues are voted on)
- Restricting voters' preferences to escape paradoxes

Multiple-election paradoxes for SSP

- Main theorem (informally). For any $p \ge 2$ and any $n \ge 2p^2$ + 1, there exists an *n*-profile such that the SSP winner is
 - Pareto dominated by almost every other candidate
 - ranked almost at the bottom (exponentially low positions) in every vote
 - an almost Condorcet loser
- Other multiple-election paradoxes:

[Brams, Kilgour & Zwicker SCW 98], [Scarsini SCW 98], [Lacy & Niou JTP 00], [Saari & Sieberg 01 APSR], [Lang & Xia MSS 09] Is there any better choice of the order O?

- **Theorem** (informally). For any $p \ge 2$ and $n \ge 2^{p+1}$, there exists an *n*-profile such that for **any** order *O* over $\{x_1, \ldots, x_p\}$, the SSP₀ winner is ranked somewhere in the bottom p+2positions.
 - The winner is ranked almost at the bottom in every vote
 - The winner is still an almost Condorcet loser
 - I.e., at least some of the paradoxes cannot be avoided by a better choice of O ³⁰

Getting rid of the paradoxes

Theorem(s) (informally)

Contracting the preferences to be separable or lexicographic gets rid of the paradoxes

Restricting the preferences to be *O*-legal does not get rid of the paradoxes

Paradoxes for other voting rules

 Theorem(s) (informally) When voters vote truthfully, there are no multipleelection paradoxes for dictatorships, plurality with runoff, STV, Copeland, Borda, Bucklin, k-approval, and ranked pairs

Agenda control

- Theorem. For any p≥4, there exists a profile P such that any alternative can be made to win under this profile by changing the order O over issues
 - When *p*=1, 2 or 3, all *p*! different alternatives can be made to win
 - The chair has full power over the outcome by agenda control (for this profile)

Summary of SSP

- We analyze voters' strategic behavior when they vote on binary issues sequentially
- The strategic outcome coincides with the truthful winner of a specific voting tree
 - cf. [McKelvey&Niemi JET 78], [Moulin Econometrica 79], [Gretlein IJGT 83], [Dutta & Sen SCW 93]
- We illustrated several types of multiple-election paradoxes to show the cost of the strategic behavior
- We further show a contrast with the truthful common voting rules; this provides more evidence that the paradoxes come from the strategic behavior
- Combinatorial voting is a promising and challenging direction!

Conclusion

- "Sequential" voting games (either voters or issues sequential) avoid equilibrium selection issues
- Paradoxes: Outcomes can be bad (in the worst case)

Thank you for your attention!