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Proper Scoring Rules [Brier, 1950]

Truthfully elicit beliefs about publicly observable events.

1 Agent reports belief y ∈ [0, 1] of event occurring.

2 March 1: pay R(y, ω), where ω =

{
1, if event occurs
0, if not.
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Naive Approach: Linear Scoring Rule

Linear Scoring Rule

Rl(y, ω) =
{

y, if ω = 1
1− y, if ω = 0

True belief p = 0.6.

Expected score: 0.6 · y + 0.4 ·
(
1− y

)
= 0.4 + 0.2y

⇒ y = 1 6= p maximizes expected score.

Linear Rule not proper!
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Quadratic Scoring Rule

Quadratic Scoring Rule

Rq(y, ω) = 1− (y− ω)2

True belief: p = 0.6.

Expected score:
p · Rq(y, 1) + (1− p) · Rq(y, 0)

= 0.6 ·
(
1− (y− 1)2)+ 0.4 ·

(
1− (y− 0)2)

= − y2 + 1.2y + 0.4

Derive and set to 0: −2y + 1.2 := 0⇔ y = 0.6

Quadratic Rule is proper: y = p maximizes expected score!
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Bonus: Prediction PollsTM
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Good Judgment Project (GJP)

Forecasting tournament for geo-political questions.
~10,000 active forecasters.
~140 questions / year.
Prediction markets and proper scoring rules.
(Mostly) play money (leaderboard).

Probability elicitation in real world:

Many forecasters: aggregation?
Not one-shot: beliefs are continuously updated.
Not every forecaster reports on every question.
Not every question has same duration.

How do you translate Proper Scoring Rules into the real world?
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Forecast Aggregation in GJP Prediction Polls

1 Take weighted average:

Current score (closed questions): previous accuracy.

Frequency of updates: ~effort.

Only k most recent forecasts: robustness vs novelty.

2 Extremize:

If average < 0.5⇒ push towards 0.

If average > 0.5⇒ push towards 1.
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Extremizing: Intuition

Probability of Heads (H) for biased ?

Before observing flip: p(H) = 0.5

Two forecasters observe flip and report:

p1(H) = 0.7 p2(H) = 0.7

Aggregated forecast:

Same coin flip⇒ p1,2(H) = 0.7

Same coin, different flips⇒ p1,2(H) > 0.7

Less information overlap⇒ more extremizing!
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Peer Prediction
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Motivation: Information Elicitation
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Motivation: Information Elicitation
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Motivation: Information Elicitation
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Research Questions

1. How can opinions or experiences be elicited truthfully?

2. How can we incentivize effort for information acquisition?
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Basic Setup

Elicit informative signal (e.g. “high” or “low” experience).
Ground truth never observed (e.g. true quality of hotel).
Allow for payments.

Agents experience same environment:

i j

Key assumption: signals are correlated!
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Belief Model (Common Knowledge)

bad

l

good

h

0.9

0.1

0.4

0.6

0.7 0.3

i

j

Sj=h

Agent i’s belief that agent j observes h:

p(h|l) = 0.18

p(h|h) = 0.46
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Minority Opinions

Agent i’s belief that agent j observes h:

p(h|l) = 0.18

p(h|h) = 0.46← minority opinion: p(h|h) < p(l|h)

Is Chicago capital of Illinois?
[Prelec and Seung, 2006]

People who know it’s not, still
believe they’re in the minority.

Peer prediction mechanisms elicit minority opinions truthfully!
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Output Agreement

Compare two agents’ reports and pay:

{
$2 if reports agree,

$0 otherwise.

Example with Si = h

i

j

Sj=h

= 0.46

E
[
payment

]
reporting h: $0.92

i

j

Sj= l

= 0.54

E
[
payment

]
reporting l: $1.08

Output Agreement not truthful!
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Classical Peer Prediction [Miller et al., 2005]

Mechanism

p(h|l)=0.18
p(h|h)=0.46

Knows belief model.

Agents

p(h|l)=0.18
p(h|h)=0.46“high” “low”

Share same belief model.
Report: Signal.
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Classical Peer Prediction: Mechanism

i

“high”

p(h|l)=0.18
p(h|h)=0.46

j

“low”
R
(

0.46, “low”
)

Intuition
1 Define agent j’s signal report as event.
2 Restrict possible belief reports to possible posteriors.

Crucial: mechanism knows how to transform signal to belief!
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Subsequent Work in Peer Prediction

Linear Programming formulation [Jurca and Faltings, 2006]

Collusion-inhibiting mechanisms [Jurca and Faltings, 2009]

Multiple equilibria unavoidable
[Waggoner and Chen, 2014]

Mechanisms not needing to know belief model
[Prelec, 2004, W. and Parkes, 2012a, Radanovic and
Faltings, 2013]

Mechanisms for subjective prior beliefs
[W. and Parkes, 2012b, 2013]

Effort incentives [W. et al, 2013]
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Summary

1 Proper Scoring Rules: elicit probabilistic forecasts.

2 Prediction Polls: aggregate forecasts in real-world system.

3 Peer Prediction: elicit opinions, experiences, or ratings.

CS-Econ: Peer Prediction with relaxed common knowledge!
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