Shading

CS 465 Lecture 4

Cornell CS465 Spring 2004 • Lecture 4 © 2004 Steve Marschner • 1

Visual cues to 3D geometry

- size (perspective)
- occlusion
- shading

Cornell CS465 Spring 2004 • Lecture 4 © 2004 Steve Marschner • 3

• Variation in observed color across an object

- present even for homogeneous material
- caused by how a material reflects light
	- depends on

Shading

- geometry
- lighting
- material
- therefore gives cues to all 3

Recognizing materials

• Human visual system is quite good at understanding shading

Α

Shading for Computer Graphics

- Need to compute an image
	- of particular geometry
	- under particular illumination
	- from a particular viewpoint
- Basic question: how much light reflects from an object toward the viewer?

Simple materials

Cornell CS465 Spring 2004 • Lecture 4 **Cornell CS465** Spring 2004 • Lecture 4 **Cornell CS465** Spring 2004 • Lecture 4 **Cornel**

Adding microgeometry

Cornell CS465 Spring 2004 • Lecture 4 **Cornell CS465** Spring 2004 • Lecture 4 **Cornell CS465** Spring 2004 • Lecture 4 **Cornel**

Classic reflection behavior

ideal specular (Fresnel)

Basics of local lighting

- Diffuse reflection
	- light goes everywhere
	- colored by object color
- Specular reflection
	- happens only near mirror configurations
	- needs to be spread out some for point lights
	- usually white (except colored metals: e.g. copper, gold)
- Ambient reflection
	- don't worry about where light comes from
	- just add a constant amount of light to account for other sources of illumination

Shading: diffuse reflection

- Assume light reflects equally in all directions
	- therefore surface looks same color from all views: "view independent"
- Illumination on an oblique surface is less than on a normal one

– generally: illumination falls off as cos θ

Diffuse reflection

- Light is scattered uniformly in all directions
	- the surface color is the same for all viewing directions
- Lambert's cosine law

Top face of cube receives a certain amount of light

Top face of 60º rotated cube intercepts half the light

In general, light per unit area is proportional to $\cos \theta = L \cdot N$

Lambertian shading

• Shading independent of view direction

Lambertian shading

• Produces matte appearance

Cornell CS465 Spring 2004 • Lecture 4 **Cornell CS465 Spring 2004 • Lecture 4** Cornell CS465 Spring 2004 • Lecture 4

Diffuse shading

Specular shading (Phong model)

- Intensity depends on view direction
	- bright near mirror configuration

Specular shading (Phong model)

- Intensity depends on view direction
	- bright near mirror configuration

Specular shading (Phong model)

- Intensity depends on view direction
	- bright near mirror configuration

Cornell CS465 Spring 2004 • Lecture 4 © 2004 Steve Marschner • 17

Phong model—plots

• Increasing *n* narrows the lobe

Fig. 16.9 Different values of $\cos^n \alpha$ used in the Phong illumination model.

Phong variant: Blinn-Phong

• Rather than computing reflection directly, just compare to normal bisection property

Specular shading

• Phong and Blinn-Phong

Blinn-Phong

Blinn-Phong (Lower Exponent)

[Foley et al.]

[Foley et al.]

Diffuse + Phong shading

Ambient shading

- Shading does not depend on anything
	- add constant color to account for disregarded illumination and fill in black shadows

Cornell CS465 Spring 2004 • Lecture 4 © 2004 Steve Marschner • 22

Putting it together

• Usually include ambient, diffuse, Phong in one model

$$
L = L_a + L_d + L_s
$$

= $k_a I_a + I (k_d \max(0, \mathbf{n} \cdot \mathbf{v}_L) + k_s \max(0, \mathbf{n} \cdot \mathbf{v}_H)^n)$

• The final result is the sum over many lights

$$
L = L_a + \sum_i (L_d)_i + (L_s)_i
$$

= $k_a I_a + \sum_i I_i (k_d \max(0, \mathbf{n} \cdot (\mathbf{v}_L)_i) + k_s \max(0, \mathbf{n} \cdot (\mathbf{v}_H)_i)^n)$

Cornell CS465 Spring 2004 • Lecture 4 © 2004 Steve Marschner • 23

Mirror reflection

- Consider perfectly shiny surface
	- there isn't a highlight
	- instead there's a reflection of other objects
- Can render this using recursive ray tracing
	- to find out mirror reflection color, ask what color is seen from surface point in reflection direction
	- already computing reflection direction for Phong…
- "Glazed" surface has mirror reflection and diffuse

$$
L = L_a + L_d + L_m
$$

– where L_m is evaluated by tracing a new ray

Diffuse + mirror reflection (glazed)

(glazed material on floor)