Shading

CS 465 Lecture 4

Visual cues to 3D geometry

- size (perspective)
- occlusion
- shading

Shading

- Variation in observed color across an object
 - strongly affected by lighting
 - present even for homogeneous material
- caused by how a material reflects light
 - depends on
 - geometry
 - lighting
 - material
 - therefore gives cues to all 3

Recognizing materials

 Human visual system is quite good at understanding shading

Shading for Computer Graphics

- Need to compute an image
 - of particular geometry
 - under particular illumination
 - from a particular viewpoint
- Basic question: how much light reflects from an object toward the viewer?

Simple materials

metal

dielectric

Adding microgeometry

Classic reflection behavior

ideal specular (Fresnel)

rough specular

Lambertian

Basics of local lighting

- Diffuse reflection
 - light goes everywhere
 - colored by object color
- Specular reflection
 - happens only near mirror configurations
 - needs to be spread out some for point lights
 - usually white (except colored metals: e.g. copper, gold)
- Ambient reflection
 - don't worry about where light comes from
 - just add a constant amount of light to account for other sources of illumination

Shading: diffuse reflection

- Assume light reflects equally in all directions
 - therefore surface looks same color from all views:"view independent"
- Illumination on an oblique surface is less than on a normal one

– generally: illumination falls off as $\cos \theta$

Diffuse reflection

- Light is scattered uniformly in all directions
 - the surface color is the same for all viewing directions
- Lambert's cosine law

Top face of cube receives a certain amount of light

Top face of 60° rotated cube intercepts half the light

In general, light per unit area is proportional to $\cos \theta = L \cdot N$

Lambertian shading

Shading independent of view direction

[Foley et al

Lambertian shading

• Produces matte appearance

Diffuse shading

Specular shading (Phong model)

- Intensity depends on view direction
 - bright near mirror configuration

Specular shading (Phong model)

- Intensity depends on view direction
 - bright near mirror configuration

$$\mathbf{v}_R = \mathbf{v}_L + 2((\mathbf{n} \cdot \mathbf{v}_L)\mathbf{n} - \mathbf{v}_L)$$
$$= 2(\mathbf{n} \cdot \mathbf{v}_L)\mathbf{n} - \mathbf{v}_L$$

Specular shading (Phong model)

- Intensity depends on view direction
 - bright near mirror configuration

Phong model—plots

Increasing n narrows the lobe

Fig. 16.9 Different values of $\cos^n \alpha$ used in the Phong illumination model.

Phong variant: Blinn-Phong

 Rather than computing reflection directly, just compare to normal bisection property

$$\mathbf{v}_H = \mathrm{bisector}(\mathbf{v}_L, \mathbf{v}_E)$$

$$= \frac{(\mathbf{v}_L + \mathbf{v}_E)}{\|\mathbf{v}_L + \mathbf{v}_E\|}$$

$$L_s = k_s I \max(0, \cos \alpha)^n$$
$$= k_s I \max(0, \mathbf{n} \cdot \mathbf{v}_H)^n$$

Specular shading

Phong and Blinn-Phong

[Foley et al.]

Diffuse + Phong shading

Ambient shading

- Shading does not depend on anything
 - add constant color to account for disregarded illumination and fill in black shadows

Putting it together

Usually include ambient, diffuse, Phong in one model

$$L = L_a + L_d + L_s$$

= $k_a I_a + I \left(k_d \max(0, \mathbf{n} \cdot \mathbf{v}_L) + k_s \max(0, \mathbf{n} \cdot \mathbf{v}_H)^n \right)$

The final result is the sum over many lights

$$L = L_a + \sum_{i} (L_d)_i + (L_s)_i$$

= $k_a I_a + \sum_{i} I_i \left(k_d \max(0, \mathbf{n} \cdot (\mathbf{v}_L)_i) + k_s \max(0, \mathbf{n} \cdot (\mathbf{v}_H)_i)^n \right)$

Mirror reflection

- Consider perfectly shiny surface
 - there isn't a highlight
 - instead there's a reflection of other objects
- Can render this using recursive ray tracing
 - to find out mirror reflection color, ask what color is seen from surface point in reflection direction
 - already computing reflection direction for Phong...
- "Glazed" surface has mirror reflection and diffuse

$$L = L_a + L_d + L_m$$

- where L_m is evaluated by tracing a new ray

Diffuse + mirror reflection (glazed)

(glazed material on floor)