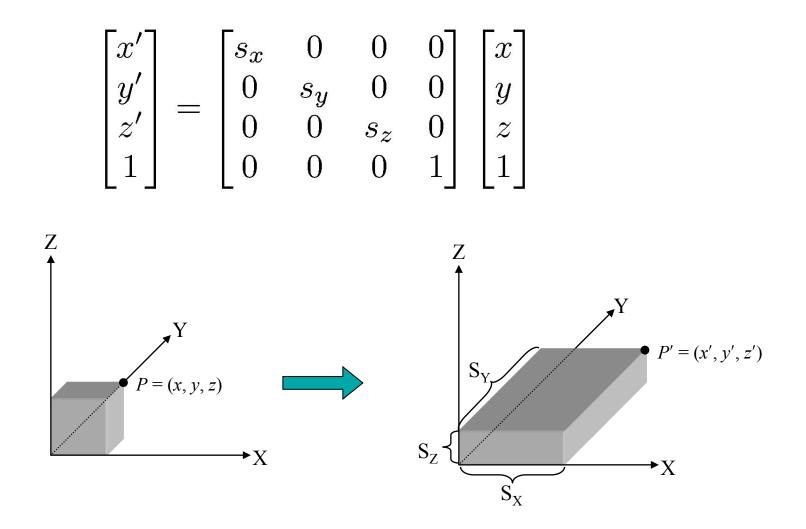
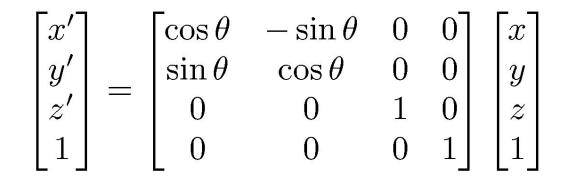
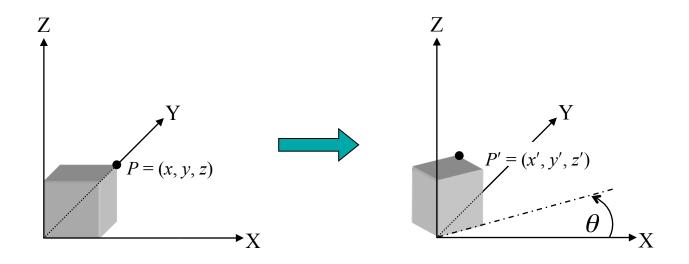

3D Transformations

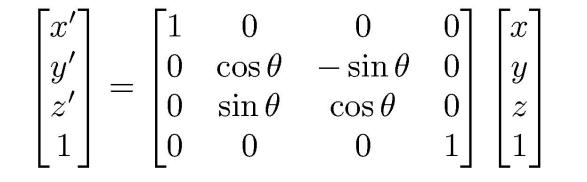

CS 465 Lecture 9

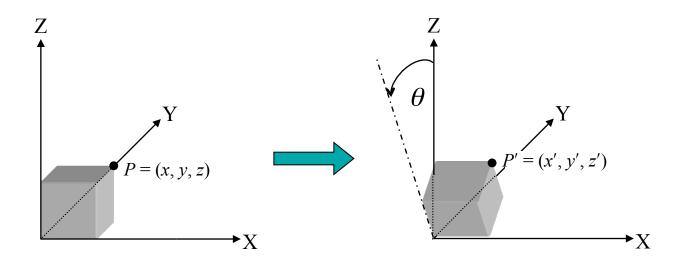
Cornell CS465 Fall 2004 • Lecture 9


Translation

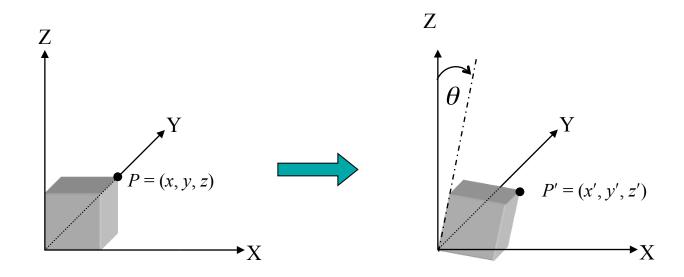


Scaling


Rotation about *z* **axis**



© 2004 Steve Marschner • 4


Rotation about *x* axis

Rotation about y axis

$$\begin{bmatrix} x'\\y'\\z'\\1 \end{bmatrix} = \begin{bmatrix} \cos\theta & 0 & \sin\theta & 0\\ 0 & 1 & 0 & 0\\ -\sin\theta & 0 & \cos\theta & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\z\\1 \end{bmatrix}$$

© 2004 Steve Marschner • 6

General rotations

- A rotation in 2D is around a point
- A rotation in 3D is around an axis
 - so 3D rotation is w.r.t an an orientation as well as a position
- Compute by composing elementary transforms
 - transform rotation axis to align with x axis
 - apply rotation
 - inverse transform back into position
- Just as in 2D this can be interpreted as a similarity transform

Building general rotations

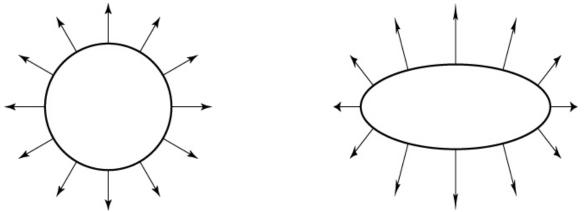
- Using elementary transforms you need three
 - translate axis to pass through origin
 - rotate about y to get into x-y plane
 - rotate about z to align with x axis
- Alternative: construct frame and change coordinates
 - choose p, u, v, w to be orthonormal frame with p and u matching the rotation axis
 - apply similarity transform $T = F R_x(\theta) F^{-1}$

Orthonormal frames in 3D

- Useful tools for constructing transformations
- Recall rigid motions
 - affine transforms with pure rotation
 - columns (and rows) form right handed ONB
 - that is, an **o**rtho**n**ormal **b**asis

$$F = \begin{bmatrix} \mathbf{u} & \mathbf{v} & \mathbf{w} & \mathbf{p} \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \qquad \mathbf{v} \qquad \qquad \mathbf$$

Building 3D frames


- Given a vector **a** and a secondary vector **b**
 - The **u** axis should be parallel to **a**; the **u–v** plane should contain **b**
 - u = u / ||u||
 - $w = u \times b$; w = w / ||w||
 - **v** = **w** × **u**
- Given just a vector **a**
 - The **u** axis should be parallel to **a**; don't care about orientation about that axis
 - Same process but choose arbitrary **b** first
 - Good choice is not near **a**: e.g. set smallest entry to I

Building general rotations

- Alternative: construct frame and change coordinates
 - choose p, u, v, w to be orthonormal frame with p and u matching the rotation axis
 - apply similarity transform $T = F R_{\chi}(\theta) F^{-1}$
 - interpretation: move to x axis, rotate, move back
 - interpretation: rewrite *u*-axis rotation in new coordinates
 - (each is equally valid)

Transforming normal vectors

- Transforming surface normals
 - differences of points (and therefore tangents) transform OK
 - normals do not

have: $\mathbf{t} \cdot \mathbf{n} = \mathbf{t}^T \mathbf{n} = 0$ want: $M\mathbf{t} \cdot X\mathbf{n} = \mathbf{t}^T M^T X\mathbf{n} = 0$ so set $X = (M^T)^{-1}$ then: $M\mathbf{t} \cdot X\mathbf{n} = \mathbf{t}^T M^T (M^T)^{-1} \mathbf{n} = \mathbf{t}^T \mathbf{n} = 0$

Cornell CS465 Fall 2004 • Lecture 9