
11/5/2002 (c) University of Wisconsin, CS 559

•  So far, we have discussed illuminating a single point

•  We have assumed that we know:
–  The point
–  The surface normal
–  The viewer location (or direction)
–  The light location (or direction)

•  But commonly, normal vectors are only given at the vertices
•  It is also expensive to compute lighting for every point

Shading so Far

()psdiaa kkIIkI)()(NHNL •+•+=

11/5/2002 (c) University of Wisconsin, CS 559

Shading Interpolation

•  Several options:
–  Flat shading
–  Gouraud interpolation
–  Phong interpolation

•  New hardware provides other options

11/5/2002 (c) University of Wisconsin, CS 559

Flat shading
•  Compute shading at a

representative point and apply to
whole polygon
–  OpenGL uses one of the vertices

•  Advantages:
–  Fast - one shading computation

per polygon, fill entire polygon
with same color

•  Disadvantages:
–  Inaccurate
–  What are the artifacts?

11/5/2002 (c) University of Wisconsin, CS 559

Gouraud Shading
•  Shade each vertex with it’s own

location and normal
•  Linearly interpolate the color

across the face
•  Advantages:

–  Fast - incremental calculations
when rasterizing

–  Much smoother - use one
normal per shared vertex to get
continuity between faces

•  Disadvantages:
–  What are the artifacts?
–  Is it accurate?

11/5/2002 (c) University of Wisconsin, CS 559

Phong Interpolation
•  Interpolate normals across faces
•  Shade each pixel
•  Advantages:

–  High quality, narrow
specularities

•  Disadvantages:
–  Expensive
–  Still an approximation for most

surfaces
•  Not to be confused with Phong’s

specularity model

11/5/2002 (c) University of Wisconsin, CS 559

11/5/2002 (c) University of Wisconsin, CS 559

Shading and OpenGL

•  OpenGL defines two particular shading models
–  Controls how colors are assigned to pixels
–  glShadeModel(GL_SMOOTH) interpolates between the colors at

the vertices (the default, Gouraud shading)
–  glShadeModel(GL_FLAT) uses a constant color across the

polygon

11/5/2002 (c) University of Wisconsin, CS 559

The Current Generation

•  Current hardware allows you to break from the standard
illumination model

•  Programmable Vertex Shaders allow you to write a small
program that determines how the color of a vertex is
computed
–  Your program has access to the surface normal and position, plus

anything else you care to give it (like the light)
–  You can add, subtract, take dot products, and so on

11/5/2002 (c) University of Wisconsin, CS 559

The Full Story

•  We have only touched on the complexities of illuminating
surfaces
–  The common model is hopelessly inadequate for accurate lighting

(but it’s fast and simple)

•  Consider two sub-problems of illumination
–  Where does the light go? Light transport
–  What happens at surfaces? Reflectance models

•  Other algorithms address the transport or the reflectance
problem, or both
–  Much later in class, or a separate course

11/5/2002 (c) University of Wisconsin, CS 559

Light Sources

•  Two aspects of light sources are important for a local
shading model:
–  Where is the light coming from (the L vector)?
–  How much light is coming (the I values)?

•  Various light source types give different answers to the
above questions:
–  Point light source: Light from a specific point
–  Directional: Light from a specific direction
–  Spotlight: Light from a specific point with intensity that depends on

the direction
–  Area light: Light from a continuum of points (later in the course)

11/5/2002 (c) University of Wisconsin, CS 559

Point and Directional Sources
•  Point light: L(x) = ||plight - x||

–  The L vector depends on where the surface point is located
–  Must be normalized - slightly expensive
–  To specify an OpenGL light at 1,1,1:

•  Directional light: L(x) = Llight
–  The L vector does not change over points in the world
–  OpenGL light traveling in direction 1,1,1 (L is in opposite direction):

Glfloat light_position[] = { 1.0, 1.0, 1.0, 1.0 };
glLightfv(GL_LIGHT0, GL_POSITION, light_position);

Glfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };
glLightfv(GL_LIGHT0, GL_POSITION, light_position);

11/5/2002 (c) University of Wisconsin, CS 559

Spotlights

•  Point source, but intensity depends on L:
–  Requires a position: the location of the source

–  Requires a direction: the center axis of the light

–  Requires a cut-off: how broad the beam is

–  Requires and exponent: how the light tapers off at the edges of the
cone

•  Intensity scaled by (L·D)n

glLightfv(GL_LIGHT0, GL_POSITION, light_posn);

glLightfv(GL_LIGHT0, GL_SPOT_DIRECTION, light_dir);

glLightfv(GL_LIGHT0, GL_SPOT_CUTOFF, 45.0);

glLightfv(GL_LIGHT0, GL_SPOT_EXPONENT, 1.0);

cut-off

direction

