Texture Mapping

CS 4620 Lecture 12

Cornell CS465 Fall 2008 ¢ Lecture 12 © 2008 Steve Marschner * |

Texture mapping

* Obijects have properties that vary across the surface

Cornell CS465 Fall 2008 ¢ Lecture 12 © 2008 Steve Marschner ¢ 2

Texture Mapping

* So we make the shading
parameters vary across
the surface

Cornell CS465 Fall 2008 ¢ Lecture 12

[Foley et al./ Perlin]

© 2008 Steve Marschner ¢ 3

Texture mapping

* Adds visual complexity; makes appealing images

[Pixar / Toy Story]

Cornell CS465 Fall 2008 ¢ Lecture 12 © 2008 Steve Marschner * 4

Texture mapping

* Color is not the same everywhere on a surface

— one solution: multiple primitives

* Want a function that assigns a color to each point
— the surface is a 2D domain, so that is essentially an image
— can represent using any image representation

— raster texture images are very popular

Cornell CS465 Fall 2008 ¢ Lecture 12 © 2008 Steve Marschner * 5

A definition

Texture mapping: a technique of
defining surface properties
(especially shading parameters) in
such a way that they vary as a
function of position on the surface.

* This is very simple!

— but it produces complex-looking effects

Cornell CS465 Fall 2008 ¢ Lecture 12 © 2008 Steve Marschner » 6

Examples

* Wood gym floor with smooth finish

— diffuse color kpy varies with position

— specular properties k¢, n are constant

* Glazed pot with finger prints
— diffuse and specular colors kp, k¢ are constant

— specular exponent n varies with position
* Adding dirt to painted surfaces

* Simulating stone, fabric, ...
— to approximate effects of small-scale geometry
* they look flat but are a lot better than nothing

Cornell CS465 Fall 2008 ¢ Lecture 12 © 2008 Steve Marschner » 7

Mapping textures to surfaces

* Usually the texture is an image (function of u, v)

— the big question of texture mapping: where on the surface
does the image go!

— obvious only for a flat rectangle the same shape as the image
— otherwise more interesting

* Note that 3D textures also exist
— texture is a function of (u, v, w)

— can just evaluate texture at 3D
surface point

— good for solid materials
— often defined procedurally

[Wolfe / SG97 Slide set]

Cornell CS465 Fall 2008 ¢ Lecture 12 © 2008 Steve Marschner » 8

Mapping textures to surfaces

* “Putting the image on the surface”

— this means we need a function f that tells where each point
on the image goes

— this looks a lot
like a parametric
surface function

— for parametric A/ b l’i
surfaces you fogieiiod
get f for free '
QA

D 3D Sqrpvce 5

f: D=5

Cornell CS465 Fall 2008 ¢ Lecture 12 © 2008 Steve Marschner * 9

Texture coordinate functions

* Non-parametrically defined surfaces: more to do
— can’t assign texture coordinates as we generate the surface
— need to have the inverse of the function f
* Texture
coordinate fn. $:S—= D
b: S — R? e B

— for a vtx.at p ,..‘ﬁ.mz&%’—_ f \
W)

i?t)textu re at (5y,2)
p
2D fexdert
duma\;\
D 3D suvfoice 2

Cornell CS465 Fall 2008 ¢ Lecture 12 © 2008 Steve Marschner * 10

Texture coordinate functions

* Mapping from $S to D can be many-to-one
— that is, every surface point gets only one color assigned

— but it is OK (and in fact useful) for multiple surface points to
be mapped to the same texture point

* e.g. repeating tiles

d can' he

Many - o— one 3 6.7.
—)(ar o ‘.1"7.'.(’6{ 1o X dea & .

Cornell CS465 Fall 2008 ¢ Lecture 12 © 2008 Steve Marschner ¢ ||

Texture coordinate functions

* Define texture image as a function

T:D—C
— where C is the set of colors for the diffuse component

* Diffuse color (for example) at point p is then

kp(p) = T(¢(p))

Cornell CS465 Fall 2008 ¢ Lecture 12 © 2008 Steve Marschner * 12

Examples of coordinate functions

* A rectangle

— image can be mapped directly, unchanged

Cornell CS465 Fall 2008 ¢ Lecture 12 © 2008 Steve Marschner ¢ 13

Examples of coordinate functions

* For a sphere: latitude-longitude coordinates
— ¢ maps point to its latitude and longitude

[eueq ‘H 4919(:dew]
3 .08l

Cornell CS465 Fall 2008 ¢ Lecture 12 © 2008 Steve Marschner * 14

Examples of coordinate functions

* A parametric surface (e.g. spline patch)

— surface parameterization gives mapping function directly
(well, the inverse of the parameterization)

Cornell CS465 Fall 2008 ¢ Lecture 12 © 2008 Steve Marschner °

[Wolfe / SG97 Slide set]

|5

Examples of coordinate functions

* For non-parametric surfaces it is trickier
— directly use world coordinates

* need to project one out

Cornell CS465 Fall 2008 ¢ Lecture 12

© 2008 Steve Marschner ¢

[Wolfe / SG97 Slide set]

16

Examples of coordinate functions

* Non-parametric surfaces: project to parametric surface

box —— —

mapping

cylindrical
mapping

mapping

[Moller & Haines 2002]

Cornell CS465 Fall 2008 ¢ Lecture 12 © 2008 Steve Marschner ¢ |7

Examples of coordinate functions

* Triangles
— specify (u,v) for each vertex

— define (u,v) for interior by linear interpolation

(u C,VC)

(ua’va)

(ub,vb)

Cornell CS465 Fall 2008 ¢ Lecture 12 © 2008 Steve Marschner * 18

Texture coordinates on meshes

* Texture coordinates become per-vertex data like
vertex positions

— can think of them as a second position: each vertex has a
position in 3D space and in 2D texure space

* How to come up with vertex (u,v)s?
— use any or all of the methods just discussed

* in practice this is how you implement those for curved
surfaces approximated with triangles

— use some kind of optimization

* try to choose vertex (u,v)s to result in a smooth, low
distortion map

Cornell CS465 Fall 2008 ¢ Lecture 12 © 2008 Steve Marschner * 19

Reflection mapping

* Early (earliest?) non-decal use of textures

* Appearance of shiny objects
— Phong highlights produce blurry highlights for glossy surfaces.
— A polished (shiny) object reflects a sharp image of its
environment.

* The whole key to a
shiny-looking material is
providing something
for it to reflect.

[Dror, Willsky, & Adelson 2004]

(a) (b)

Figure 2. (a). A shiny sphere rendered under photographically
acquired real-world illumination. (b). The same sphere rendered
under illumination by a point light source.

Cornell CS465 Fall 2008 ¢ Lecture 12 © 2008 Steve Marschner ¢ 20

Reflection mapping

* From ray tracing we know what we'd like to compute

— trace a recursive ray into the scene—too expensive

* If scene is infinitely far away, depends only on direction

— a two-dimensional function

"{:fr i i
—— Fo

s

Mo

=

a P

Rq_g 1':-{'J| Cfid g .
. v E nipron Mot magpfing
i

| j

Cornell CS465 Fall 2008 ¢ Lecture 12 © 2008 Steve Marschner * 21|

Environment map

* A function from the sphere to colors,
stored as a texture.

[Blinn & Newell 1976]

Cornell CS465 Fall 2008 ¢ Lecture 12 © 2008 Steve Marschner * 22

Yoy

Hand with Reflecting Sphere. M. C. Escher, 1935. lithograph
Cornell CS465 Fall 2008 * Lecture 12 © 2008 Steve Marschner * 23

IS

Environment Maps

[Paul Debevec]

Cornell CS465 Fall 2008 ¢ Lecture 12 © 2008 Steve Marschner * 24

[CS467 slides]

Cube environment map

[Ned Greene]

Cornell CS465 Fall 2008 ¢ Lecture 12 © 2008 Steve Marschner ¢ 26

Normal mapping

N B
SRR AT
A
S, ES A
origingl mesh simpliﬁc_—zd mesh angir:grlmz(ljr:\naepsgng
4M triangles 500 triangles 500 triangles

[Paolo Cignoni]

Cornell CS569 Spring 2008 Lecture 7. 27

base subdivision surface hand-painted displacement map (detail)

Pawet Filip

displaced surface
tolas.wordpress.com

Cornell CS569 Spring 2008 Lecture 7. 28

Bump mapping

Aoz

|

[Blinn 1978]

Cornell CS569 Spring 2008 Lecture 7+ 30

Displacement mapping

Geometry Bump Displacement z

o <

mapping mapping S

Cornell CS569 Spring 2008 « Lecture 5 © 2008 Steve Marschner « 31

Another definition

Texture mapping: a general
technique for storing and evaluating
functions.

* They're not just for shading parameters any more!

Cornell CS465 Fall 2008 ¢ Lecture 12 © 2008 Steve Marschner * 32

