
© 2008 Steve Marschner • Cornell CS465 Fall 2008 • Lecture 12

Texture Mapping

CS 4620 Lecture 12

1

© 2008 Steve Marschner • Cornell CS465 Fall 2008 • Lecture 12

Texture mapping

• Objects have properties that vary across the surface

2

© 2008 Steve Marschner • Cornell CS465 Fall 2008 • Lecture 12

Texture Mapping

• So we make the shading 
parameters vary across 
the surface

[F
ol

ey
 e

t
al

. /
 P

er
lin

]

3

© 2008 Steve Marschner • Cornell CS465 Fall 2008 • Lecture 12

Texture mapping

• Adds visual complexity; makes appealing images

[P
ix

ar
 /

To
y

St
or

y]

4

© 2008 Steve Marschner • Cornell CS465 Fall 2008 • Lecture 12

Texture mapping

• Color is not the same everywhere on a surface
– one solution: multiple primitives

• Want a function that assigns a color to each point
– the surface is a 2D domain, so that is essentially an image
– can represent using any image representation
– raster texture images are very popular

5

© 2008 Steve Marschner • Cornell CS465 Fall 2008 • Lecture 12

Texture mapping: a technique of
defining surface properties
(especially shading parameters) in
such a way that they vary as a
function of position on the surface.

A definition

• This is very simple!
– but it produces complex-looking effects

6

© 2008 Steve Marschner • Cornell CS465 Fall 2008 • Lecture 12

Examples

• Wood gym floor with smooth finish

– diffuse color kD varies with position

– specular properties kS, n are constant

• Glazed pot with finger prints

– diffuse and specular colors kD, kS are constant

– specular exponent n varies with position

• Adding dirt to painted surfaces
• Simulating stone, fabric, …

– to approximate effects of small-scale geometry
• they look flat but are a lot better than nothing

7

© 2008 Steve Marschner • Cornell CS465 Fall 2008 • Lecture 12

Mapping textures to surfaces

• Usually the texture is an image (function of u, v)
– the big question of texture mapping: where on the surface

does the image go?
– obvious only for a flat rectangle the same shape as the image
– otherwise more interesting

• Note that 3D textures also exist
– texture is a function of (u, v, w)
– can just evaluate texture at 3D  

surface point
– good for solid materials
– often defined procedurally

[W
ol

fe
 /

SG
97

 S
lid

e
se

t]

8

© 2008 Steve Marschner • Cornell CS465 Fall 2008 • Lecture 12

Mapping textures to surfaces

• “Putting the image on the surface”
– this means we need a function f that tells where each point

on the image goes
– this looks a lot 

like a parametric  
surface function

– for parametric 
surfaces you 
get f for free

9

© 2008 Steve Marschner • Cornell CS465 Fall 2008 • Lecture 12

Texture coordinate functions

• Non-parametrically defined surfaces: more to do
– can’t assign texture coordinates as we generate the surface
– need to have the inverse of the function f

• Texture 
coordinate fn.

– for a vtx. at p 
get texture at 
φ(p)

10

© 2008 Steve Marschner • Cornell CS465 Fall 2008 • Lecture 12

Texture coordinate functions

• Mapping from S to D can be many-to-one
– that is, every surface point gets only one color assigned
– but it is OK (and in fact useful) for multiple surface points to

be mapped to the same texture point
• e.g. repeating tiles

11

© 2008 Steve Marschner • Cornell CS465 Fall 2008 • Lecture 12

Texture coordinate functions

• Define texture image as a function

– where C is the set of colors for the diffuse component

• Diffuse color (for example) at point p is then

12

© 2008 Steve Marschner • Cornell CS465 Fall 2008 • Lecture 12

Examples of coordinate functions

• A rectangle
– image can be mapped directly, unchanged

13

© 2008 Steve Marschner • Cornell CS465 Fall 2008 • Lecture 12

Examples of coordinate functions

• For a sphere: latitude-longitude coordinates
– φ maps point to its latitude and longitude

[m
ap: Peter H

. D
ana]

14

© 2008 Steve Marschner • Cornell CS465 Fall 2008 • Lecture 12

Examples of coordinate functions

• A parametric surface (e.g. spline patch)
– surface parameterization gives mapping function directly 

(well, the inverse of the parameterization)

[W
ol

fe
 /

SG
97

 S
lid

e
se

t]

15

© 2008 Steve Marschner • Cornell CS465 Fall 2008 • Lecture 12

Examples of coordinate functions

• For non-parametric surfaces it is trickier
– directly use world coordinates

• need to project one out

[W
ol

fe
 /

SG
97

 S
lid

e
se

t]

16

© 2008 Steve Marschner • Cornell CS465 Fall 2008 • Lecture 12

Examples of coordinate functions

• Non-parametric surfaces: project to parametric surface

[M
ol

le
r

&
 H

ai
ne

s
20

02
]

17

© 2008 Steve Marschner • Cornell CS465 Fall 2008 • Lecture 12

Examples of coordinate functions

• Triangles
– specify (u,v) for each vertex
– define (u,v) for interior by linear interpolation

(u,v)

(uc,vc)

(ub,vb)

(ua,va)

18

© 2008 Steve Marschner • Cornell CS465 Fall 2008 • Lecture 12

Texture coordinates on meshes

• Texture coordinates become per-vertex data like
vertex positions
– can think of them as a second position: each vertex has a

position in 3D space and in 2D texure space

• How to come up with vertex (u,v)s?
– use any or all of the methods just discussed

• in practice this is how you implement those for curved
surfaces approximated with triangles

– use some kind of optimization
• try to choose vertex (u,v)s to result in a smooth, low

distortion map

19

© 2008 Steve Marschner • Cornell CS465 Fall 2008 • Lecture 12

Reflection mapping

• Early (earliest?) non-decal use of textures
• Appearance of shiny objects

– Phong highlights produce blurry highlights for glossy surfaces.
– A polished (shiny) object reflects a sharp image of its

environment.

• The whole key to a 
shiny-looking material is  
providing something  
for it to reflect.

Journal of Vision (2004) 4, 821-837 Dror, Willsky, & Adelson 822

(a) (b)

Figure 2. (a). A shiny sphere rendered under photographically

acquired real-world illumination. (b). The same sphere rendered

under illumination by a point light source.

(a) (b)

Figure 3. (a). A photograph of a metal sphere. (b). The negative

of the same photograph.

realistic illumination provides a much stronger sense of the
glossy reflectance than the image rendered under a point
source.

Figure 3 compares a photograph of a metal sphere to a
negative of the same photograph. The original photograph
has the characteristic appearance of a metal sphere viewed
in an everyday scene. The sphere simply produces a dis-
torted and slightly blurred image of the world around it.
The negative image could, in principle, also be a photo-
graph of the same sphere, if it happened to be placed in a
world with the appropriate distribution of light and dark.
There is no physical reason why this scene could not exist,
and a determined photographer could build it on purpose,
but it would never occur in ordinary life. This negative im-
age does not look like a metal sphere; in fact, it hardly

looks like a realistic photograph of any ordinary sphere.
These demonstrations show that some illumination

patterns lead to significant errors in human material per-
ception. In ordinary life, however, we rarely encounter such
phenomena. Figure 4 shows four spheres, each photo-
graphed in two locations. The images of different spheres
in the same setting are more similar in a pixelwise sense
than images of the same sphere in different settings. Yet,
we easily recognize the various spheres under different eve-
ryday illumination conditions. In an experiment where sub-
jects were asked to match reflectance properties under dif-
ferent illumination conditions, they consistently performed
better when given two complex real-world illuminations
than when given one real-world illumination and one sim-
ple synthetic illumination (Fleming, Dror, & Adelson,

Figure 4. The two images in each column are photographs of the same sphere. The four images in each row were photographed in the

same location, under the same illumination.

[D
ro

r,
W

ill
sk

y,
 &

 A
de

lso
n

20
04

]

20

© 2008 Steve Marschner • Cornell CS465 Fall 2008 • Lecture 12

Reflection mapping

• From ray tracing we know what we’d like to compute
– trace a recursive ray into the scene—too expensive

• If scene is infinitely far away, depends only on direction
– a two-dimensional function

21

© 2008 Steve Marschner • Cornell CS465 Fall 2008 • Lecture 12

Environment map

• A function from the sphere to colors,  
stored as a texture.

[B
lin

n
&

N
ew

el
l 1

97
6]

22

© 2008 Steve Marschner • Cornell CS465 Fall 2008 • Lecture 12

Spherical environment map

Hand with Reflecting Sphere. M. C. Escher, 1935. lithograph
23

© 2008 Steve Marschner • Cornell CS465 Fall 2008 • Lecture 12 24

Environment Maps

[Paul Debevec]

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 5 25

[CS467 slides]

© 2008 Steve Marschner • Cornell CS465 Fall 2008 • Lecture 12

Cube environment map

[N
ed

 G
re

en
e]

26

Lecture 7 • Cornell CS569 Spring 2008

Normal mapping

27

[Paolo Cignoni]

Lecture 7 • Cornell CS569 Spring 2008 28

Paweł Filip
tolas.wordpress.com

base subdivision surface

displaced surface

hand-painted displacement map (detail)

Lecture 7 • Cornell CS569 Spring 2008

Bump mapping

30

4. DEPENDANCE ON SCALE

One feature of the perturbation calculation
is that the perturbation amount is not invariant
with the scale at which the object is drawn. If
the X, Y, and Z surface definiton functions are
scaled up by 2 then the normal vector length, INI,

scaled up by a factor of 4 while the
perturbation amount, IDI, is only scaled by 2.
This effect is due to the fact that the object is
being scaled but the displacement function F is
not. (Scale changes due to the object moving
nearer or farther from the viewer in perspective
space do not affect the size of the wrinkles, only
scale shanges applied directly to the object.) The
net effect of this is that if an object is scaled
up, the wrinkles flatten out. This is illustrated
in figure 9.

norma l stretched

Figure 9 - stretched Bump Texture

This effect might be desirable for some
applications but undesirable for others. A scale
invariant perturbation, D', must scale at the same
rate as N. An obvious choice for this is

D' = a D INI/IDI

50 ID’1 = a INI

where a is independent of scales in P. The value
of a is then the tangent of the effective rotation
angle.

tan+' = ID'l/lNl = a

This can be defined in various ways. One simple
choice is a generalization from the simple, flat
unit square patch

X(u,v) = u
Y(u,v) = v
Z(u,v) = 0

For this patch the original normal vector
perturbation gives

N = (0,0,1)
D = (-Fu,-Fv,0)

tan+ = sqrt(Fu'+Fv')

Here the value of a is purely a function of F.
Use of the same function for arbitrary patches
corresponds to a perturbation of

a = sqrt(Fu'+Fv.')
D' = a D lNl/lDl

N" = N + D'

The texture defining function F is now no longer
being used as an actual displacement added to the
position of the surface. It just serves to
provide (in the form if its derivatives) a means
of defining the rotation axis and angle as
functions of u and v.

5 . ALIASING

In an earlier paper 121, the author described
the effect of aliasing on images made with color
texture mapping. The same problems can arise with
this new form. That is, undesirable artifacts can
enter the image in regions where the texture
pattern maps into a small screen region. The
solution applied to color textures was to average
the texture pattern over the region corresponding
to each picture element in the final image. The
bump texture definition function, however, does
not have a linear relationship to the intensity of
the final image. If the bump texture is averaged
the effect will be to smooth out the bumps rather
than average the intensities. The correct
solution to this problem would be to compute the
intensities at some high sub-pixel resolution and
average them. Simply filtering the bump function
can, however, reduce the more offensive artifacts- -.
o f aliasing. Figure 10 shows the result of such
an operation.

Before
:

After

Figure 10 - Filtering Bump Texture

291

[Blinn 1978]

sznple results that can be achieved with this
technique. The first pattern, a hand drawn unit
cell of bricks was mapped onto the sphere on the
cover.

Figure 8 Hand Drawn Functions Figure A- Hand Drawn Bump Funtions

© 2008 Steve Marschner • Cornell CS569 Spring 2008 • Lecture 5 31

Geometry Bump
mapping

Displacement
mapping

Displacement mapping

[C
S4

67
 sl

id
es

]

© 2008 Steve Marschner • Cornell CS465 Fall 2008 • Lecture 12

Texture mapping: a general
technique for storing and evaluating
functions.

Another definition

• They’re not just for shading parameters any more!

32

